N^a (log N)^b

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You are given a function F(N) for a positive integer N, represented as a string F following the BNF notation for the $\langle \exp \rangle$ symbol as follows:

 $\begin{array}{l} \langle \mathrm{expr} \rangle ::= \langle \mathrm{term} \rangle \mid \langle \mathrm{expr} \rangle `+' \langle \mathrm{term} \rangle \\ \langle \mathrm{term} \rangle ::= \langle \mathrm{factor} \rangle \mid \langle \mathrm{term} \rangle `*' \langle \mathrm{factor} \rangle \\ \langle \mathrm{factor} \rangle ::= `\mathbf{N}' \mid `\mathbf{N}^{*} \langle \mathrm{number} \rangle \mid `\log(` \langle \mathrm{expr} \rangle `)' \mid `\log(` \langle \mathrm{expr} \rangle `)^{*} \langle \mathrm{number} \rangle \mid `(` \langle \mathrm{expr} \rangle `)' \\ \langle \mathrm{number} \rangle ::= \langle \mathrm{nonzero_digit} \rangle \mid \langle \mathrm{nonzero_digit} \rangle \langle \mathrm{digit_string} \rangle \\ \langle \mathrm{digit_string} \rangle ::= \langle \mathrm{digit} \rangle \mid \langle \mathrm{digit} \rangle \langle \mathrm{digit_string} \rangle \\ \langle \mathrm{nonzero_digit} \rangle ::= `1' \mid `2' \mid `3' \mid `4' \mid `5' \mid `6' \mid `7' \mid `8' \mid `9' \\ \langle \mathrm{digit} \rangle ::= `0' \mid \langle \mathrm{nonzero_digit} \rangle \end{array}$

The symbols represent the following:

- $\bullet \ {\tt N}{:} \ N$
- \bullet +: Addition +
- *: Multiplication ×
- log: Natural logarithm log
- (,): Parentheses, with higher precedence than addition + or multiplication *
- \sim : Exponentiation, with higher precedence than addition + or multiplication *

 $\langle number \rangle$ represents an integer in decimal notation, guaranteed to be between 1 and 10⁹. Also, 'log(' $\langle expr \rangle$ ')^' $\langle number \rangle$ represents $(\log(\langle expr \rangle))^{\langle number \rangle}$.

For example, the following strings can be $\langle \exp \rangle$ symbols:

- N+log(N)*N: Represents $N + \log(N) \times N$.
- $N^1+N^2+\log(N)+\log(N)^{100000000}$: Represents $N^1+N^2+\log(N)+(\log(N))^{100000000}$.
- N*(N+(log(N+N)^2*N))+(((N))): Represents $N \times (N + (\log(N+N))^2 \times N) + (((N)))$.
- (log((N))): Represents $(\log((N)))$.

The following strings cannot be $\langle \exp \rangle$ symbols:

- $(\log(N)+N)^2$: The form '(' $\langle \exp \rangle$ ') '' $\langle \operatorname{number} \rangle$ is not used in $\langle \operatorname{factor} \rangle$.
- (log(N))^2
- (N
-)N(

- N^100000001
- N^02
- N^O
- N^N
- 2
- log(3)
- N-log(N)
- log(N)/N

While F(N) may not be defined for all positive integers N, for any input, there exists a positive integer N_0 such that F(N) is defined for all positive integers $N \ge N_0$.

Therefore, define the set S of all non-negative integer pairs (a, b) such that the limit

$$\lim_{N \to \infty} \frac{F(N)}{N^a (\log N)^b}$$

converges to a finite value (including 0). Output the **lexicographically smallest pair** (a, b) in S.

Here, a non-negative integer pair (a, b) is the lexicographically smallest in S if it belongs to S, and for any other pair (a', b') in S, either:

- a < a'
- a = a' and $b \le b'$

It is proven that S is not an empty set, and furthermore, there exists the lexicographically smallest pair in S.

Input

The input is given from Standard Input in the following format:

F

- The function F(N) is given as a string F following the $\langle \exp \rangle$ symbol defined in the problem statement.
- $1 \leq |F| \leq 10^5$

Output

Output the lexicographically smallest pair (a, b) of S separated by a space.

Examples

standard input	standard output
N*log(N^2)*log(N)+N+log(N^1+N)^2*N	1 2
N*log(log(N))	1 1
(((N))*N^234567890+N^2)	234567891 0

Note

In the first example, $F(N) = N \times \log(N^2) \times \log(N) + N + (\log(N^1 + N))^2 \times N$.

For this case, non-negative integer pairs (a, b) such that the limit in the problem statement converges to a finite value include (a, b) = (1, 2), (1, 3), (2, 0), etc. For these pairs, the limits are as follows:

$$\lim_{N \to \infty} \frac{F(N)}{N^1 (\log N)^2} = 3$$
$$\lim_{N \to \infty} \frac{F(N)}{N^1 (\log N)^3} = 0$$
$$\lim_{N \to \infty} \frac{F(N)}{N^2 (\log N)^0} = 0$$

Note that 0 is considered a finite value. On the other hand, for example, (a, b) = (1, 1) leads to:

$$\lim_{N \to \infty} \frac{F(N)}{N^1 (\log N)^1} = \infty$$

and does not converge to a finite value.

It can be shown that within the set S of all pairs satisfying the conditions, (a, b) = (1, 2) is lexicographically the smallest.

In the second example, $F(N) = N \times \log(\log(N))$. For (a, b) = (1, 1):

$$\lim_{N\to\infty} \frac{F(N)}{N^1 (\log N)^1} = 0$$

and converges to a finite value.

It can be shown that within the set S of all pairs satisfying the conditions, (a, b) = (1, 1) is lexicographically the smallest.

In the third example, $F(N) = (((N)) \times N^{234567890} + N^2)$.