$N^{\wedge} a(\log N)^{\wedge} b$

Input file：
Output file
Time limit：
Memory limit： 1024 megabytes

You are given a function $F(N)$ for a positive integer N ，represented as a string F following the BNF notation for the $\langle\operatorname{expr}\rangle$ symbol as follows：

```
        <expr\rangle::=\langleterm\rangle| <expr\rangle'+' \langleterm\rangle
        \langleterm\rangle::=\langlefactor\rangle | \langleterm\rangle '*'\langlefactor\rangle
        \langlefactor\rangle ::= 'N' | 'N'N' \langlenumber\rangle | 'log('\langleexpr\rangle')' | 'log('\langleexpr\rangle') '' \langlenumber\rangle | '(' \langleexpr\rangle')'
    <number\rangle ::= \langlenonzero_digit\rangle | \langlenonzero_digit\rangle\langledigit_string\rangle
    \langledigit_string\rangle ::= <digit\rangle | \langledigit\rangle\langledigit_string\rangle
<nonzero_digit\rangle ::= '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
    \langledigit\rangle ::= '0' | \langlenonzero_digit\rangle
```

The symbols represent the following：
－N：N
－＋：Addition＋
－＊：Multiplication \times
－log：Natural logarithm log
－（，）：Parentheses，with higher precedence than addition + or multiplication＊
－＾：Exponentiation，with higher precedence than addition＋or multiplication＊
＜number〉 represents an integer in decimal notation，guaranteed to be between 1 and 10^{9} ．Also， ${ }^{\prime} \log ('\langle\operatorname{expr}\rangle \text {＇})^{\prime}$＇$\langle$ number \rangle represents $(\log (\langle\operatorname{expr}\rangle))^{\langle\text {number }\rangle}$ ．

For example，the following strings can be 〈expr〉 symbols：
－ $\mathrm{N}+\log (\mathrm{N}) * \mathrm{~N}:$ Represents $N+\log (N) \times N$ ．
－ $\mathrm{N}^{\wedge} 1+\mathrm{N}^{\wedge} 2+\log (\mathrm{N})+\log (\mathrm{N}) \wedge 1000000000:$ Represents $N^{1}+N^{2}+\log (N)+(\log (N))^{1000000000}$ ．
－ $\mathrm{N} *\left(\mathrm{~N}+\left(\log (\mathrm{N}+\mathrm{N})^{\wedge} 2 * \mathrm{~N}\right)\right)+(((\mathrm{N}))):$ Represents $N \times\left(N+(\log (N+N))^{2} \times N\right)+(((N)))$ ．
－$(\log ((N))):$ Represents $(\log ((N)))$ ．

The following strings cannot be \langle expr \rangle symbols：
－$(\log (N)+N)^{\sim} 2$ ：The form＇（＇$\langle\operatorname{expr}\rangle$＇$)^{\wedge}$＇$\langle$ number \rangle is not used in \langle factor \rangle ．
－$(\log (N))^{\wedge} 2$
－（ N
－）N（

- $\mathrm{N}^{\wedge} 1000000001$
- $\mathrm{N}^{\wedge} 02$
- $\mathrm{N}^{\sim} \mathrm{O}$
- $\mathrm{N}^{\wedge} \mathrm{N}$
- 2
- $\log (3)$
- $N-\log (N)$
- $\log (N) / N$

While $F(N)$ may not be defined for all positive integers N, for any input, there exists a positive integer N_{0} such that $F(N)$ is defined for all positive integers $N \geq N_{0}$.

Therefore, define the set S of all non-negative integer pairs (a, b) such that the limit

$$
\lim _{N \rightarrow \infty} \frac{F(N)}{N^{a}(\log N)^{b}}
$$

converges to a finite value (including 0). Output the lexicographically smallest pair (a, b) in S.
Here, a non-negative integer pair (a, b) is the lexicographically smallest in S if it belongs to S, and for any other pair $\left(a^{\prime}, b^{\prime}\right)$ in S, either:

- $a<a^{\prime}$
- $a=a^{\prime}$ and $b \leq b^{\prime}$

It is proven that S is not an empty set, and furthermore, there exists the lexicographically smallest pair in S.

Input

The input is given from Standard Input in the following format:

```
F
```

- The function $F(N)$ is given as a string F following the $\langle\operatorname{expr}\rangle$ symbol defined in the problem statement.
- $1 \leq|F| \leq 10^{5}$

Output

Output the lexicographically smallest pair (a, b) of S separated by a space.

Examples

standard input	standard output	
$N * \log \left(N^{\wedge} 2\right) * \log (N)+N+\log \left(N^{\wedge} 1+N\right)^{\wedge} 2 * N$	12	
$N * \log (\log (N))$	11	$234567891 \quad 0$
$\left(((N)) * N^{\wedge} 234567890+N^{\wedge} 2\right)$		

Note

In the first example, $F(N)=N \times \log \left(N^{2}\right) \times \log (N)+N+\left(\log \left(N^{1}+N\right)\right)^{2} \times N$.
For this case, non-negative integer pairs (a, b) such that the limit in the problem statement converges to a finite value include $(a, b)=(1,2),(1,3),(2,0)$, etc. For these pairs, the limits are as follows:

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{F(N)}{N^{1}(\log N)^{2}}=3 \\
& \lim _{N \rightarrow \infty} \frac{F(N)}{N^{1}(\log N)^{3}}=0 \\
& \lim _{N \rightarrow \infty} \frac{F(N)}{N^{2}(\log N)^{0}}=0
\end{aligned}
$$

Note that 0 is considered a finite value. On the other hand, for example, $(a, b)=(1,1)$ leads to:

$$
\lim _{N \rightarrow \infty} \frac{F(N)}{N^{1}(\log N)^{1}}=\infty
$$

and does not converge to a finite value.
It can be shown that within the set S of all pairs satisfying the conditions, $(a, b)=(1,2)$ is lexicographically the smallest.

In the second example, $F(N)=N \times \log (\log (N))$. For $(a, b)=(1,1)$:

$$
\lim _{N \rightarrow \infty} \frac{F(N)}{N^{1}(\log N)^{1}}=0
$$

and converges to a finite value.
It can be shown that within the set S of all pairs satisfying the conditions, $(a, b)=(1,1)$ is lexicographically the smallest.
In the third example, $F(N)=\left(((N)) \times N^{234567890}+N^{2}\right)$.

