Cola

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

Alice has a favorite permutation $P = (P_1, P_2, ..., P_N)$ of (1, 2, ..., N). Bob found out that if he guesses P, he will receive a cola from Alice. So, Bob decides to ask Alice questions to guess P.

Bob can ask the following question up to M times:

• Choose a permutation $Q = (Q_1, Q_2, \dots, Q_N)$ of $(1, 2, \dots, N)$ and ask Alice if her favorite permutation is Q.

Here, $M \leq N$ holds.

Alice will respond to Bob's questions with the following actions:

- If P = Q, Alice will give a cola to Bob.
- If $P \neq Q$, Alice will tell Bob the smallest index *i* such that $P_i \neq Q_i$.

For example, if P = (4, 3, 2, 1) and Bob asks the question with Q = (4, 3, 1, 2), Alice informs Bob that there exists an index *i* such that $P_i \neq Q_i$, and the smallest such *i* is 3.

Note that even if Bob identifies P after the M-th question, he won't receive a cola.

Initially, Bob has no information about P. Please calculate the maximum probability that Bob receives a cola from Alice, and output this probability modulo 998244353.

Definition of probability modulo 998244353

It can be proven that the probability sought in this problem will always be a rational number. Also, in the constraints of this problem, it is guaranteed that when the sought probability is expressed in the form of an irreducible fraction $\frac{y}{x}$, x is not divisible by 998244353. In this case, there exists a unique $0 \le z < 998244353$ satisfying $y \equiv xz \pmod{998244353}$, so output z.

Input

The input is given from Standard Input in the following format:

N M

- All values in the input are integers.
- $1 \le M \le N \le 10^7$

Output

Output the answer.

Examples

standard input	standard output
2 1	499122177
1 1	1
167 91	469117530

Note

In the first example, since there is only one question allowed, and there are two possible permutations for P, Bob can receive a cola with a probability of $\frac{1}{2}$.

Note that even if Bob misses on the first question, he can still identify P, but he won't receive a cola.

In the second sample, Bob will always receive a cola with the first question.