Cola

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

Alice has a favorite permutation $P=\left(P_{1}, P_{2}, \ldots, P_{N}\right)$ of $(1,2, \ldots, N)$. Bob found out that if he guesses P, he will receive a cola from Alice. So, Bob decides to ask Alice questions to guess P.

Bob can ask the following question up to M times:

- Choose a permutation $Q=\left(Q_{1}, Q_{2}, \ldots, Q_{N}\right)$ of $(1,2, \ldots, N)$ and ask Alice if her favorite permutation is Q.

Here, $M \leq N$ holds.
Alice will respond to Bob's questions with the following actions:

- If $P=Q$, Alice will give a cola to Bob.
- If $P \neq Q$, Alice will tell Bob the smallest index i such that $P_{i} \neq Q_{i}$.

For example, if $P=(4,3,2,1)$ and Bob asks the question with $Q=(4,3,1,2)$, Alice informs Bob that there exists an index i such that $P_{i} \neq Q_{i}$, and the smallest such i is 3 .

Note that even if Bob identifies P after the M-th question, he won't receive a cola.

Initially, Bob has no information about P. Please calculate the maximum probability that Bob receives a cola from Alice, and output this probability modulo 998244353.

Definition of probability modulo 998244353

It can be proven that the probability sought in this problem will always be a rational number. Also, in the constraints of this problem, it is guaranteed that when the sought probability is expressed in the form of an irreducible fraction $\frac{y}{x}, x$ is not divisible by 998244353 . In this case, there exists a unique $0 \leq z<998244353$ satisfying $y \equiv x z(\bmod 998244353)$, so output z.

Input

The input is given from Standard Input in the following format:

N M

- All values in the input are integers.
- $1 \leq M \leq N \leq 10^{7}$

Output

Output the answer.

Examples

standard input	standard output
21	499122177
11	1
16791	469117530

Note

In the first example, since there is only one question allowed, and there are two possible permutations for P, Bob can receive a cola with a probability of $\frac{1}{2}$.

Note that even if Bob misses on the first question, he can still identify P, but he won't receive a cola.

In the second sample, Bob will always receive a cola with the first question.

