Dense Planting

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You are given an integer K. Construct an undirected graph that satisfies the following conditions:

- The number of vertices N is between 1 and 100 (inclusive).
- The number of edges M is at most 1000.
- Assuming all edges are distinguishable, there are exactly K spanning trees in the graph. In other words, among the 2^M ways of choosing some edges from the M edges and removing the rest, there are exactly K ways such that the remaining edges form a tree.

Input

The input is given from Standard Input in the following format:

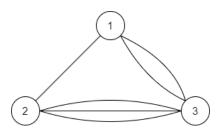
K

- K is an integer.
- $1 \le K \le 10^9$

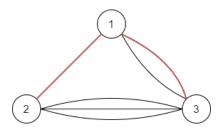
Output

Output an undirected graph that satisfies the conditions in the following format. If there are multiple graphs that satisfy the conditions, you may output any of them.

N M $U_1 V_1$ \vdots $U_M V_M$


 $U_i, V_i \ (1 \le i \le M)$ represent that the *i*-th edge connects vertices U_i and V_i .

Examples


standard input	standard output
11	3 6
	1 2
	1 3
	1 3
	2 3
	2 3
	2 3
54	4 10
	1 2
	2 3
	2 3
	2 3
	3 4
	3 4
	3 4
	4 1
	4 1
	4 1

Note

In the first example, the output graph is represented by the following diagram:


For example, choosing the following 2 edges forms a spanning tree of this graph:

- A spanning tree consisting of edges 1 2 and 1 3 can be selected in 2 ways.
- A spanning tree consisting of edges 1-2 and 2-3 can be selected in 3 ways.
- A spanning tree consisting of edges 1-3 and 2-3 can be selected in 6 ways.

Therefore, there are a total of 11 spanning trees.

Additionally, the following graph also has 11 spanning trees, so the following output is also considered correct:

	standard output	
2 11		
12		
12		
12		
12		
12		
12		
12		
12		
12		
12		
12		