Dense Planting

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 1024 megabytes
You are given an integer K. Construct an undirected graph that satisfies the following conditions:

- The number of vertices N is between 1 and 100 (inclusive).
- The number of edges M is at most 1000 .
- Assuming all edges are distinguishable, there are exactly K spanning trees in the graph. In other words, among the 2^{M} ways of choosing some edges from the M edges and removing the rest, there are exactly K ways such that the remaining edges form a tree.

Input

The input is given from Standard Input in the following format:

K

- K is an integer.
- $1 \leq K \leq 10^{9}$

Output

Output an undirected graph that satisfies the conditions in the following format. If there are multiple graphs that satisfy the conditions, you may output any of them.

```
N M
U1 V
\vdots
UM VM
```

$U_{i}, V_{i}(1 \leq i \leq M)$ represent that the i-th edge connects vertices U_{i} and V_{i}.

Examples

| standard input | | standard output |
| :--- | :--- | :--- | :--- |
| 11 | 3 | 6 |
| | 1 | 2 |
| | 1 | 3 |
| 1 | 3 | |
| | 2 | 3 |
| | 2 | 3 |
| | 2 | 3 |
| 54 | 4 | 10 |
| | 1 | 2 |
| | 2 | 3 |
| | 2 | 3 |
| | 2 | 3 |
| | 3 | 4 |
| | 3 | 4 |
| | 3 | 4 |
| | 4 | 1 |
| | 4 | 1 |
| | 4 | 1 |

Note

In the first example, the output graph is represented by the following diagram:

For example, choosing the following 2 edges forms a spanning tree of this graph:

- A spanning tree consisting of edges $1-2$ and $1-3$ can be selected in 2 ways.
- A spanning tree consisting of edges $1-2$ and $2-3$ can be selected in 3 ways.
- A spanning tree consisting of edges $1-3$ and $2-3$ can be selected in 6 ways.

Therefore, there are a total of 11 spanning trees.
Additionally, the following graph also has 11 spanning trees, so the following output is also considered correct:

		standard output
2	11	
1	2	
1	2	
1	2	
1	2	
1	2	
1	2	
1	2	
1	2	
1	2	
1	2	
1	2	

