Problem E. Emerging Tree

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

Consider a set $V = \{1, \ldots, n\}$ of *n* vertices, and a sequence of directed edges e_1, \ldots, e_{n-1} . Let G_0, \ldots, G_{n-1} be a sequence of graphs such that G_0 is empty, and G_i is obtained by introducing the edge e_i into G_{i-1} for each $i = 1, \ldots, n-1$. It is guaranteed that G_{n-1} is a rooted tree with all edges directed away from the root.

Your task is to find a *suitable* permutation p_1, \ldots, p_n of the set $\{1, \ldots, n\}$. Let $S_i(v) = \{p_u \mid u \text{ can be reached from } v \text{ in } G_i\}$. A permutation p_1, \ldots, p_n is called *suitable* if for any $i \in \{0, \ldots, n-1\}$ and for any $v \in V$ we have that $S_i(v)$ consists of consecutive numbers (that is, $S_i(v) = \{l, l+1, \ldots, r\}$ for some numbers l and r).

Input

The first line contains a single integer $n \ (2 \le n \le 10^6)$.

The next n-1 lines describe the edges e_1, \ldots, e_{n-1} . The *i*-th of these lines contains two integers u_i and v_i — indices of the source and the target vertices of the edge e_i $(1 \le u_i, v_i \le n)$.

It is guaranteed that adding all n-1 edges results in a rooted tree with edges directed away from the root.

Output

If there is no suitable permutation, print the only word "No" in the only line.

Otherwise, print "Yes" on the first line. On the second line print n integers p_1, \ldots, p_n describing any suitable permutation.

Examples

standard input	standard output
4	Yes
3 1	3 1 4 2
1 4	
1 2	
7	No
1 2	
1 3	
1 4	
2 5	
3 6	
4 7	