Problem E. Emerging Tree

Input file: standard input
Output file: standard output
Time limit: 3 seconds
Memory limit: 512 mebibytes
Consider a set $V=\{1, \ldots, n\}$ of n vertices, and a sequence of directed edges e_{1}, \ldots, e_{n-1}. Let G_{0}, \ldots, G_{n-1} be a sequence of graphs such that G_{0} is empty, and G_{i} is obtained by introducing the edge e_{i} into G_{i-1} for each $i=1, \ldots, n-1$. It is guaranteed that G_{n-1} is a rooted tree with all edges directed away from the root.
Your task is to find a suitable permutation p_{1}, \ldots, p_{n} of the set $\{1, \ldots, n\}$. Let $S_{i}(v)=\left\{p_{u} \mid u\right.$ can be reached from v in $\left.G_{i}\right\}$. A permutation p_{1}, \ldots, p_{n} is called suitable if for any $i \in\{0, \ldots, n-1\}$ and for any $v \in V$ we have that $S_{i}(v)$ consists of consecutive numbers (that is, $S_{i}(v)=\{l, l+1, \ldots, r\}$ for some numbers l and r).

Input

The first line contains a single integer $n\left(2 \leq n \leq 10^{6}\right)$.
The next $n-1$ lines describe the edges e_{1}, \ldots, e_{n-1}. The i-th of these lines contains two integers u_{i} and v_{i} - indices of the source and the target vertices of the edge $e_{i}\left(1 \leq u_{i}, v_{i} \leq n\right)$.
It is guaranteed that adding all $n-1$ edges results in a rooted tree with edges directed away from the root.

Output

If there is no suitable permutation, print the only word "No" in the only line.
Otherwise, print "Yes" on the first line. On the second line print n integers p_{1}, \ldots, p_{n} describing any suitable permutation.

Examples

	standard input			standard output
4	1	Yes		
1	4	3	1	4
1	2	2		
7				
1	2	No		
1	3			
1	4			
2	5			
3	6			
4	7			

