Problem F. Fast Travel Coloring

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 mebibytes

You are given a complete undirected graph with $7 n$ vertices (here n is a positive integer). Your task is to paint its edges in n colors in such a way that for each pair of vertices and each color there is a path of at most two edges of this color connecting this pair of vertices. More formally, for each pair of vertices u, v and each color c at least one of the two options should hold:

- the edge between u and v has color c;
- there is a vertex w that both edges (u, w) and (w, v) have color c.

Input

The only line of input contains a positive integer $n(7 \leq 7 n \leq 1000)$.

Output

Let us number the colors from 1 to n. Let $c_{i, j}$ be 0 if $i=j$, and the color of the edge (i, j) in your coloring otherwise (in particular, in this case $c_{i, j}=c_{j, i}$). Print $c_{i, j}$ in $7 n$ lines containing $7 n$ numbers each.
It is guaranteed that a solution exists.

Examples

standard input	standard output
1	$\begin{array}{lllllll} 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{array}$
2	0 1 2 2 1 1 1 1 1 1 1 1 1 1 1 0 1 2 2 2 2 2 2 2 2 2 2 2 2 1 0 1 2 2 2 2 2 2 2 2 2 2 2 2 1 0 1 1 1 1 1 1 1 1 1 1 1 2 2 1 0 2 2 2 2 2 2 2 2 2 1 2 2 1 2 0 1 1 1 1 1 1 1 1 1 2 2 1 2 1 0 1 1 1 1 1 1 1 1 2 2 1 2 1 1 0 1 1 1 1 1 1 1 2 2 1 2 1 1 1 0 1 1 1 1 1 1 2 2 1 2 1 1 1 1 0 1 1 1 1 1 2 2 1 2 1 1 1 1 1 0 1 1 1 1 2 2 1 2 1 1 1 1 1 1 0 1 1 1 2 2 1 2 1 1 1 1 1 1 1 0 1 1 2 2 1 2 1 1 1 1 1 1 1 1 0

Note

The second sample test corresponds to the following coloring:

Here are two separate subgraphs for both colors:

