Problem G. Gnutella Chessmaster

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

Alexander has recently achieved ridiculously high rating on Chessforces competition website. Alexander's coach challenged him with a difficult problem so that Alexander could truly prove his mettle.

Consider an $n \times n$ chessboard. A *bishop* is a chess piece that attacks all positions sharing a diagonal with it. A *non-attacking configuration* is an arrangement of several bishops on the chessboard such that no two bishops occupy the same position, and no bishop attacks any other.

Alexander has to count the number of non-attacking bishop configurations with exactly k bishops for each k from 1 to 2n - 1. Since the answers can be large, each number has to be computed modulo a completely random number 998 244 353.

Input

The first line contains a single integer $n \ (1 \le n \le 10^5)$.

Output

Print 2n - 1 integers. The k-th of these integers should be the number (modulo 998244353) of non-attacking configurations of exactly k bishops on an $n \times n$ chessboard.

Examples

standard input	standard output
2	4 4 0
3	9 26 26 8 0
10	100 4380 110960 1809464 20014112
	154215760 837543200 214861037
	625796024 941559921 770927213
	837612209 756883449 146369278
	295974400 17275136 246784 1024 0