Dreamy Putata

Input file:
Output file:
Time limit:
standard input
standard output
6 seconds
Memory limit:
1024 mebibytes
Putata is dreaming that he got lost in a phantom grid world of size $n \times m$. The rows and columns of the grid are numbered from 0 to $n-1$ and 0 to $m-1$, respectively. Putata has no idea how to escape from the phantom world, so he decides to walk randomly. Assuming Putata is now at (x, y), he will:

- Move to $(x,(y-1) \bmod m)$ with probability $\frac{\ell(x, y)}{100}$.
- Move to $(x,(y+1) \bmod m)$ with probability $\frac{r(x, y)}{100}$.
- Move to $((x-1) \bmod n, y)$ with probability $\frac{u(x, y)}{100}$.
- Move to $((x+1) \bmod n, y)$ with probability $\frac{d(x, y)}{100}$.

You need to perform q operations. Each operation is one of the following:

- "1 x y cl cr cu cd" ($0 \leq x<n, 0 \leq y<m, 1 \leq c \ell, c r, c u, c d \leq 100, c \ell+c r+c u+c d=100)$: Change the values of $\ell(x, y), r(x, y), u(x, y)$, and $d(x, y)$ into $c \ell, c r, c u$, and $c d$, respectively.
- "2 sx sy tx ty" $(0 \leq s x, t x<n, 0 \leq s y, t y<m,(s x, s y) \neq(t x, t y))$: Assuming Putata is now at ($s x, s y$), he is wondering what is the expected number of steps that he will take when he reaches the target position $(t x, t y)$ for the first time.

Please write a program to answer his questions.

Input

The first line of the input contains two integers n and $m\left(3 \leq n \leq 10^{5}, 3 \leq m \leq 5\right)$ denoting the size of the phantom grid world.
In the next n lines, the i-th line contains m integers $\ell(i-1,0), \ell(i-1,1), \ldots, \ell(i-1, m-1)(1 \leq i \leq n$, $1 \leq \ell(\cdot, \cdot) \leq 100)$.
In the next n lines, the i-th line contains m integers $r(i-1,0), r(i-1,1), \ldots, r(i-1, m-1)(1 \leq i \leq n$, $1 \leq r(\cdot, \cdot) \leq 100)$.
In the next n lines, the i-th line contains m integers $u(i-1,0), u(i-1,1), \ldots, u(i-1, m-1)(1 \leq i \leq n$, $1 \leq u(\cdot, \cdot) \leq 100)$.
In the next n lines, the i-th line contains m integers $d(i-1,0), d(i-1,1), \ldots, d(i-1, m-1)(1 \leq i \leq n$, $1 \leq d(\cdot, \cdot) \leq 100)$.
It is guaranteed that $\ell(i, j)+r(i, j)+u(i, j)+d(i, j)=100$ holds for all pairs of (i, j) where $0 \leq i<n$ and $0 \leq j<m$.
The next line contains a single integer $q\left(1 \leq q \leq 3 \cdot 10^{4}\right)$ denoting the number of operations.
Each of the next q lines describes an operation in the format described in the statement above.

Output

For each test query, print a single line containing an integer: the expected number of steps that Putata will take when he reaches the target position $(t x, t y)$ for the first time.
More precisely, assuming the reduced fraction of the answer is $\frac{p}{q}$, you should output the minimum nonnegative integer r such that $q \cdot r \equiv p\left(\bmod 10^{9}+7\right)$. You may safely assume that such r always exists in all test cases.

Example

standard input	standard output
43	76426175
123	344136684
456	555192113
789	
101112	
232425	
262728	
293031	
323334	
101112	
131415	
161718	
192021	
666360	
575451	
484542	
393633	
4	
2001111	
20032	
$\begin{array}{llllll}1 & 1 & 1 & 25 & 25 & 25\end{array}$	
20032	

