north america

The 2023 ICPC North America Qualifier

Problem K Very Important Edge Time limit: 3 seconds

You are given a simple connected graph where each edge is assigned a non-negative weight. Recall that a minimum spanning tree of a graph is a connected, acyclic subset of the edges of the graph with minimum total weight. Find an edge which maximizes the minimum spanning tree weight of a given graph if that edge is deleted. It is guaranteed that the input graph remains connected after deleting any one edge.

Input

The first line of input contains two integers $n\left(3 \leq n \leq 10^{5}\right)$ and $m\left(3 \leq m \leq 10^{6}\right)$, where n is the number of vertices and m is the number of edges in the input graph. The vertices are numbered from 1 to n.

Each of the next m lines contains three integers $a, b(1 \leq a<b \leq n)$ and $w\left(1 \leq w \leq 10^{6}\right)$. This denotes an edge between vertices a and b with weight w.

Output

Output a single integer, which is the minimum spanning tree weight of the input graph after the right edge is deleted.

Sample Input 1 Sample Output 1

3	3	
1	2	1
2	3	2
1	3	2

Sample Input 2
Sample Output 2

4	5	5
2	3	5
1	2	2
1	3	4
1	4	2
3	4	3

icpc north america contests

Upsilon pi epsilon

The 2023 ICPC North America Qualifier

Sample Input 3		Sam	
5	7	54	
2	5	8	
1	3	19	
4	5	9	
1	5	15	
1	2	14	
3	4	16	
2	4	15	

