

The 2023 ICPC North America Qualifier

Problem K Very Important Edge Time limit: 3 seconds

You are given a simple connected graph where each edge is assigned a non-negative weight. Recall that a minimum spanning tree of a graph is a connected, acyclic subset of the edges of the graph with minimum total weight. Find an edge which maximizes the minimum spanning tree weight of a given graph if that edge is deleted. It is guaranteed that the input graph remains connected after deleting any one edge.

Input

The first line of input contains two integers $n (3 \le n \le 10^5)$ and $m (3 \le m \le 10^6)$, where n is the number of vertices and m is the number of edges in the input graph. The vertices are numbered from 1 to n.

Each of the next m lines contains three integers a, b $(1 \le a < b \le n)$ and $w (1 \le w \le 10^6)$. This denotes an edge between vertices a and b with weight w.

Output

Output a single integer, which is the minimum spanning tree weight of the input graph after the right edge is deleted.

Sample Input 1	Sample Output 1
3 3	4
1 2 1	
2 3 2	
1 3 2	

Sample Input 2	Sample Output 2
4 5	10
2 3 5	
1 2 2	
1 3 4	
1 4 2	
3 4 3	

The 2023 ICPC North America Qualifier

Sample Input 3	Sample Output 3
5 7	54
2 5 8	
1 3 19	
4 5 9	
1 5 15	
1 2 14	
3 4 16	
2 4 15	