Sequence Problem ID: sequence

A sequence of positive integers (x_1, \ldots, x_m) is good if $x_1 = 1$ and for each $1 < j \le m$ we have either $x_j = x_{j-1} + 1$ or $x_j = x_k \cdot x_l$ for some k and l with $0 < k \le l < j$. For instance, the sequences (1, 1) and (1, 2) are both good, but the sequence (1, 3) is not good. For n given integers w_1, \ldots, w_n define the weight of an integer sequence (x_1, \ldots, x_m) satisfying $1 \le x_j \le n$ for each $1 \le j \le m$ as

 $w_{x_1} + \cdots + w_{x_m}$.

For instance, given the weights $w_1 = 10$, $w_2 = 42$, $w_3 = 1$, the weight of the sequence (1, 1) is 20 and the weight of the sequence (1, 3) is 11. For $1 \le v \le n$, define s_v as the smallest possible weight of a good sequence containing the value v.

Your task is to determine the values s_1, \ldots, s_n .

Input

The first line of input consists of the integer n, the number of weights. The next n lines contain the integer weights w_1, \ldots, w_n .

Output

Print *n* lines containing s_1, \ldots, s_n in order.

Constraints and Scoring

We always have $1 \le n \le 30\,000$ and $1 \le w_i \le 10^6$ for each $1 \le i \le n$.

Your solution will be tested on a set of test groups, each worth a number of points. Each test group contains a set of test cases. To get the points for a test group you need to solve all test cases in the test group. Your final score will be the maximum score of a single submission.

Group	Points	Constraints
1	11	$n \leq 10$
2	10	$n \le 300, w_1 = \dots = w_n = 1$
3	10	$n \leq 300, w_1 = \cdots = w_n$
4	9	$n \le 1400, w_1 = \dots = w_n = 1$
5	45	$n \leq 5000$
6	15	No additional constraints

Sample Input 1	Sample Output 1
3	10
10	52
42	53
1	