Sequence

Problem ID: sequence

A sequence of positive integers $\left(x_{1}, \ldots, x_{m}\right)$ is good if $x_{1}=1$ and for each $1<j \leq m$ we have either $x_{j}=x_{j-1}+1$ or $x_{j}=x_{k} \cdot x_{l}$ for some k and l with $0<k \leq l<j$. For instance, the sequences $(1,1)$ and $(1,2)$ are both good, but the sequence $(1,3)$ is not good. For n given integers w_{1}, \ldots, w_{n} define the weight of an integer sequence $\left(x_{1}, \ldots, x_{m}\right)$ satisfying $1 \leq x_{j} \leq n$ for each $1 \leq j \leq m$ as

$$
w_{x_{1}}+\cdots+w_{x_{m}}
$$

For instance, given the weights $w_{1}=10, w_{2}=42, w_{3}=1$, the weight of the sequence $(1,1)$ is 20 and the weight of the sequence $(1,3)$ is 11 . For $1 \leq v \leq n$, define s_{v} as the smallest possible weight of a good sequence containing the value v.

Your task is to determine the values s_{1}, \ldots, s_{n}.

Input

The first line of input consists of the integer n, the number of weights. The next n lines contain the integer weights w_{1}, \ldots, w_{n}.

Output

Print n lines containing s_{1}, \ldots, s_{n} in order

Constraints and Scoring

We always have $1 \leq n \leq 30000$ and $1 \leq w_{i} \leq 10^{6}$ for each $1 \leq i \leq n$.
Your solution will be tested on a set of test groups, each worth a number of points. Each test group contains a set of test cases. To get the points for a test group you need to solve all test cases in the test group. Your final score will be the maximum score of a single submission.

Group	Points	Constraints
1	11	$n \leq 10$
2	10	$n \leq 300, w_{1}=\cdots=w_{n}=1$
3	10	$n \leq 300, w_{1}=\cdots=w_{n}$
4	9	$n \leq 1400, w_{1}=\cdots=w_{n}=1$
5	45	$n \leq 5000$
6	15	No additional constraints

Sample Input 1 Sample Output 1

3	10
10	52
12	53

