Stacks

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

There are n stacks, numbered from 1 to n. There are also m operations, which come in three types:

- $1 l r x y$, meaning to push x copies of y onto each stack numbered within the interval $[l, r]$.
- $2 l r w$, meaning to perform the pop operation w times on each stack numbered within the interval [l,r]. Here, the pop operation means that if the stack is empty, do nothing; otherwise, pop the top element.
- $3 k p q$, meaning to query the sum of elements from the p-th to the q-th, starting from the bottom of the stack numbered k. If the i-th element does not exist in the stack, it is considered to be 0 .

Help me to process all the m operations.

Input

The first line contains two integers n and $m\left(1 \leq n, m \leq 10^{5}\right)$.
The following m lines describe an operation each, in the form of:

- $1 \operatorname{lr} x y\left(1 \leq l \leq r \leq n, 1 \leq x, y \leq 10^{5}\right)$, to push x copies of y onto each stack numbered within the interval $[l, r]$.
- $2 \operatorname{lr} w\left(1 \leq l \leq r \leq n, 1 \leq w \leq 10^{10}\right)$, to perform the pop operation w times on each stack numbered within the interval $[l, r]$.
- $3 k \operatorname{kq}\left(1 \leq k \leq n, 1 \leq p \leq q \leq 10^{10}\right)$, to query the sum of elements from the p-th to the q-th, starting from the bottom of the stack numbered k.

Output

For each query, output a single line contains a single integer, representing the answer.

Example

				standard input		standard output
4	8				4	
1	1	3	3	2		5
1	2	4	2	1		2
3	1	2	4			
3	2	2	4			
2	2	3	1			
2	1	2	2			
3	1	1	1			
3	2	2	3			

