Stacks

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

There are n stacks, numbered from 1 to n. There are also m operations, which come in three types:

- 1 l r x y, meaning to push x copies of y onto each stack numbered within the interval [l, r].
- 2 l r w, meaning to perform the pop operation w times on each stack numbered within the interval [l, r]. Here, the pop operation means that if the stack is empty, do nothing; otherwise, pop the top element.
- 3 k p q, meaning to query the sum of elements from the p-th to the q-th, starting from the bottom of the stack numbered k. If the *i*-th element does not exist in the stack, it is considered to be 0.

Help me to process all the m operations.

Input

The first line contains two integers n and m $(1 \le n, m \le 10^5)$.

The following m lines describe an operation each, in the form of:

- 1 l r x y $(1 \le l \le r \le n, 1 \le x, y \le 10^5)$, to push x copies of y onto each stack numbered within the interval [l, r].
- 2 l r w $(1 \le l \le r \le n, 1 \le w \le 10^{10})$, to perform the pop operation w times on each stack numbered within the interval [l, r].
- 3 k p q $(1 \le k \le n, 1 \le p \le q \le 10^{10})$, to query the sum of elements from the *p*-th to the *q*-th, starting from the bottom of the stack numbered k.

Output

For each query, output a single line contains a single integer, representing the answer.

Example

standard input	standard output
4 8	4
1 1 3 3 2	5
1 2 4 2 1	2
3 1 2 4	2
3 2 2 4	
2 2 3 1	
2 1 2 2	
3 1 1 1	
3 2 2 3	