## Accelerator

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 3 seconds |
| Memory limit: | 512 megabytes |

DreamGrid is driving a spaceship from Mars to Earth.
There are $n$ accelerators on the trajectory to accelerate the spaceship. The $i$-th accelerator has an accelerating factor of $a_{i}$. The spaceship will pass the accelerators one by one. Initially, the velocity of the spaceship is 0 . When the spaceship passes through an accelerator, it gains energy from the accelerator and the velocity changes. Formally, if the accelerating factor is $A$ and the velocity before accelerating is $v$, the velocity after accelerating becomes $v^{\prime}=(v+1) \times A$.
However, the $n$ accelerators are uniformly randomly shuffled. DreamGrid doesn't know the order of the accelerators passed through now. Can you tell him the expected velocity after passing through all the $n$ accelerators?
It can be proved that the expected velocity is rational. Suppose that the answer can be denoted by $\frac{u}{d}$ where $\operatorname{gcd}(u, d)=1$, you need to output an integer $r$ such that $r d \equiv u(\bmod 998244353)$ and $0 \leq r<998244353$. It can be proved that such $r$ exists and is unique.

## Input

There are multiple test cases. The first line of the input contains an integer $T(1 \leq T \leq 100000)$, indicating the number of test cases. For each test case:

The first line contains an integer $n(1 \leq n \leq 100000)$, indicating the number of accelerators.
The next line contains $n$ integers $a_{1}, a_{2}, \cdots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right)$, indicating the accelerating factors.
It's guaranteed that the sum of $n$ of all test cases will not exceed 100000 .

## Output

For each test case output one line containing the integer $r$.

## Example

|  | standard input | standard output |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 |  | 665496247 |  |  |
| 3 |  |  | 10 |  |
| 1 | 2 | 3 | 780 |  |
| 1 |  |  |  |  |
| 10 |  |  |  |  |
| 4 |  |  |  |  |
| 5 | 5 | 5 |  |  |

## Note

For the first example, there are 6 ways to order the accelerators:

$$
\begin{aligned}
& 1,2,3: v=((((0+1) \times 1+1) \times 2)+1) \times 3=15 \\
& 1,3,2: v=((((0+1) \times 1+1) \times 3)+1) \times 2=14 \\
& 2,1,3: v=((((0+1) \times 2+1) \times 1)+1) \times 3=12 \\
& 2,3,1: v=((((0+1) \times 2+1) \times 3)+1) \times 1=10 \\
& 3,1,2: v=((((0+1) \times 3+1) \times 1)+1) \times 2=10
\end{aligned}
$$

$3,2,1: v=((((0+1) \times 3+1) \times 2)+1) \times 1=9$
So the expected velocity is $\frac{15+14+12+10+10+9}{3!}=\frac{70}{6}$.

