Boring Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 megabytes

Given a string S, n strings $T_{1}, T_{2}, \ldots, T_{n}$ of length m and a positive rational number sequence p of length k whose sum is 1 . Each string consists of only the first k lowercase letters. Let's perform the following procedure:

1. If there exists $j(1 \leq j \leq n)$ such that T_{j} is a substring of S, stop the procedure.
2. Append the i-th lowercase letter with probability p_{i} to the end of S, then return to step 1 .

Let's define $f(S ; T, p)$ as the expected length of S when the procedure stops.
It's boring to calculate $f(S ; T, p)$ for only one string S. To make the problem much harder, a string R is given. Let's denote the prefix of R of length i as $R[1 \ldots i]$. Your task is to calculate $f(R[1 \ldots i] ; T, p)$ for $i=1,2, \cdots,|R|$.
It can be proved that $f(S ; T, p)$ is a positive rational number and it can be represented as $\frac{P}{Q}$ with $\operatorname{gcd}(P, Q)=1$. It is guaranteed that $Q \not \equiv 0\left(\bmod \left(10^{9}+7\right)\right)$ for all strings S under the given T and p in the input. You should print the value of $P Q^{-1} \bmod \left(10^{9}+7\right)$.

Input

The first line contains three positive integers n, m and $k(1 \leq n \leq 100, n \times m \leq 10000,1 \leq k \leq 26)$.
The second line contains k positive integers $p_{1}^{\prime}, p_{2}^{\prime} \cdots, p_{k}^{\prime}$. It is guaranteed that $p_{1}^{\prime}+p_{2}^{\prime}+\cdots+p_{k}^{\prime}=100$ and the probability p_{i} equals to $\frac{p_{i}^{\prime}}{100}$.
The i-th line of the following n lines contains a string T_{i} of length m.
The last line contains a string $R(1 \leq|R| \leq 10000)$.
It is guaranteed each string consists of only the first k lowercase letters and $Q \not \equiv 0\left(\bmod \left(10^{9}+7\right)\right)$ when representing $f(S ; T, p)$ as $\frac{P}{Q}$ with $\operatorname{gcd}(P, Q)=1$ for all strings S under the given T and p in the input.

Output

Ouput $|R|$ lines. The i-th line contains an integer representing the value of $f(R[1 \ldots i] ; T, p)$.

Examples

standard input	standard output
222 5050 aa bb ababaa	$\begin{aligned} & \hline 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 6 \end{aligned}$
	13 333333343 333333344 333333345 17 333333347 333333348 20 333333358 666666692 23 24
```444 10 20 30 40 abcb cabc abbb cccc ababacabaabcca```	$\begin{aligned} & 146386692 \\ & 32395942 \\ & 146386694 \\ & 32395944 \\ & 146386696 \\ & 851050282 \\ & 242422295 \\ & 512573933 \\ & 146386700 \\ & 146386701 \\ & 32395951 \\ & 66073407 \\ & 572924730 \\ & 242422302 \end{aligned}$

