Mountain

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: $\quad 512$ megabytes
DreamGrid is climbing a mountain. The mountain is described by a polyline on a 2 D plane:

$$
(0,0)-\left(1, h_{1}\right)-\left(2, h_{2}\right)-\cdots-\left(n, h_{n}\right)-(n+1,0)
$$

The region surrounded by the polyline and the x -axis denotes the mountain.
DreamGrid takes n pictures at the points $\left(i, h_{i}\right)$ for each integer i where $1 \leq i \leq n$. A picture covers a rectangle on the plane. Formally, a picture taken at $\left(i, h_{i}\right)$ covers all the points (x, y) where $i-W \leq x \leq i+W$ and $h_{i}-H \leq y \leq h_{i}+H$.

However, his hard disk has limited space. When he saves the pictures into his hard disk, he can keep only K pictures. He wants to maximize the total area of the mountain which is covered by at least one picture. You are asked to find the maximum area for $K=1,2, \cdots, n$.

The graph above is a sample where $n=3, W=1, H=2$. The polyline describing the mountain is A-B-C-D-E. DreamGrid keeps 2 pictures taken at C and D. The red area (polygon F-M-C-D-E-N-F) is the part of the mountain covered by the kept pictures.

Input

The first line of the input contains three integers n, W and $H(1 \leq n \leq 200,1 \leq W \leq 5,1 \leq H \leq 10000)$, indicating the number of points on the polyline and the size of the pictures.

The second line contains n integers $h_{1}, h_{2}, \cdots, h_{n}\left(1 \leq h_{i} \leq 10000\right)$, indicating the y coordinates of the n points on the polyline.

Output

Output n lines, the i-th line contains a float number indicating the maximum area when $K=i$.
Your answer is acceptable if its absolute or relative error does not exceed 10^{-6}.

Formally speaking, suppose that your output is x and the jury's answer is y. Your output is accepted if and only if $\frac{|x-y|}{\max (1, y \mid)} \leq 10^{-6}$.

Example

	standard input	standard output	
3	1	2	3.5000000000
2	1	3	4.5000000000
		5.1666666667	

