Excuse

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

You are given a fair coin (That is, if you flip this coin, there will be a 50% chance of heads and 50% chance of tails.). You would like to use it to generate a sequence of n integers $a_{1}, a_{2}, \cdots, a_{n}$. To do that, you will repeat the following process exactly n times:

- Keep tossing this coin until you get a tails-up result.
- Suppose you get k times of heads-up result before you stop.
- An integer k is generated and added to the end of the sequence.

For a sequence of integers $b_{1}, b_{2}, \cdots, b_{m}$, let $\operatorname{mex}\left(b_{1}, b_{2}, \cdots, b_{m}\right)$ be the smallest non-negative integers x such that:

- For each $1 \leq i<x$, there exists $1 \leq j \leq m$ such that $b_{j}=i$.
- $b_{j} \neq x$ for all $1 \leq j \leq m$.

For example, $\operatorname{mex}(0,1,0,3)=2, \operatorname{mex}(4,3,2,1,0,6,7,5)=8$ and $\operatorname{mex}(1,2,3)=0$.
Now, you would like to calculate the expected value of $\operatorname{mex}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$, modulo 998244353 .

Input

The first line of the input contains a single integer $n\left(1 \leq n \leq 10^{5}\right)$.

Output

Output a single line contains a single integer, indicating the answer modulo 998244353.

Examples

standard input	standard output
1	499122177
3	561512450

Note

In the first example:

- If $a_{1}=0$, we have $\operatorname{mex}\left(a_{1}\right)=1$. There is a $1 / 2$ probability of this happening.
- Otherwise, we have $\operatorname{mex}\left(a_{1}\right)=0$.

Therefore, the answer is $1 \times \frac{1}{2}+0 \times\left(1-\frac{1}{2}\right)=\frac{1}{2} \equiv 499122177(\bmod 998244353)$

