Gift

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Given an undirected graph with n vertices and n edges, you need to calculate how many ways there are to choose a vertex p and an edge (x, y) such that, after removing the edge (x, y), the graph becomes a tree, and when this tree is rooted at p, each node has no more than 3 children. It is guaranteed that there is at least one possible plan.

Input

The first line of the input contains a single integer $n \ (2 \le n \le 10^5)$.

The next n lines of the input describes the edges of the graph. The *i*-th line of these lines contains two integers x_i and y_i $(1 \le x_i, y_i \le n, x_i \ne y_i)$, indicating the *i*-th edge.

It is guaranteed that there are no multiple edges or self loops in the graph.

Output

Output a single line contains a single integer, indicating the answer.

Example

standard input	standard output
6	10
1 2	
1 3	
1 4	
1 5	
1 6	
2 3	