Problem J. Just Counting

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

You are given an undirected graph without loops and multiple edges.
Find the number of ways to write integers $[0 ; 4]$ on edges such that for each vertex, the sum of weights of edges incident to it will be equal to zero modulo five (i.e. is equal to $5 k$ for some integer k).

As the answer may be very large, you only need to find it modulo 998244353.

Input

The first line of input contains one integer $t(1 \leq t \leq 500000)$: the number of testcases.
The next lines contain t descriptions of test cases.
The first line of each test case contains two integers n, $m(1 \leq n \leq 200000,0 \leq m \leq 300000)$: the number of vertices.

The next m lines contain descriptions of edges, where the i-th of them contains two integers a_{i}, b_{i} $\left(1 \leq a_{i}, b_{i} \leq n, a_{i} \neq b_{i}\right)$, denoting an edge connecting vertices a_{i} and b_{i} in the graph.

It is guaranteed that there are no multiple edges.
It is also guaranteed that the total sum of $n+m$ in all test cases is at most 500000 .

Output

For each test case, print one integer: the number of ways to write integers $[0 ; 4]$ on edges such that for each vertex, the sum of weights of edges incident to it will be equal to zero modulo five (i.e. is equal to $5 k$ for some integer k), modulo 998244353 .

Example

	standard input		standard output
3		1	
1	0		1
3	3	5	
1	2		
2	3		
3	1		
4	4		
1	2		
2	3		
3	4		
4	1		

