Sticks

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

Little Cyan Fish has an $n \times n$ matrix. Each row and each column has a stick on its left side and top side, respectively. Let x_{i} represent the length of the stick on the left side of the i-th row and y_{i} represent the length of the stick on the top side of the i-th column, where $0 \leq x_{i}, y_{i} \leq n$ and both are integers. Additionally, the sticks must not intersect, meaning there should be no $i, j \in[1, n]$ such that both $x_{i} \geq j$ and $y_{j} \geq i$ hold true.

Little Cyan Fish defines the matrix A as follows:

- For each $i, j \in[1, n]$, if $x_{i} \geq j$ or $y_{j} \geq i$, then $A_{i, j}=1$; otherwise, $A_{i, j}=0$.

Given an $n \times n$ matrix M containing 0 s , 1 s , and ?s, you need to determine how many different matrices can be formed by replacing each ? with either a 0 or a 1 , so that there is at least one set of the sticks $\left\{x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots, y_{n}\right\}$ that could obtain this matrix. Since the answer may be large, output it modulo 998244353.

Input

The first line of the input contains a single integer $n(1 \leq n \leq 3000)$.
The next n lines of the input describes the matrix M. Each of the line contains a string of length n containing " 0 ", " 1 ", and "?", indicating the matrix.

Output

Output a single line contains a single integer, indicating the answer.

Examples

standard input	standard output
2	14
??	
??	
5	3144
$? ? 1 ? ?$	
?1??0	
??0??	
???1?	
??1??	
10	
0000000000	
??????????	
??????????	
??????????	
??????????	
??????????	
??????????	
??????????	
??????????	
??????????	

