Problem B. Somewhere Over the Rainbow

Input file:
Output file: Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

You want to draw a rainbow. The rainbow can be represented as a sequence of integer heights $a_{0}, a_{1}, \ldots, a_{m}$ and must satisfy the following constraints:

- $a_{0}=a_{m}=0$ (the endpoints of the rainbow are 0 meters above the horizon),
- $2 a_{i}>a_{i-1}+a_{i+1}$ for all $0<i<m$ (the rainbow is convex),
- $a_{x_{i}} \geq y_{i}$ for n given pairs $\left(x_{i}, y_{i}\right)$.

You also want the rainbow to take as little space as possible, so please find the minimum possible value of $\sum_{i=0}^{m} a_{i}$. Since the answer may be very large, output it modulo 998244353.

Input

The first line of input contains two positive integers n and $m\left(1 \leq n \leq 2 \cdot 10^{5}, 1 \leq m \leq 10^{9}\right)$: the number of constraints and the length of the sequence.
Each of the next n lines contains two integers $x_{i}\left(1 \leq x_{i} \leq m-1\right)$ and $y_{i}\left(1 \leq y_{i} \leq 10^{18}\right)$, which set conditions $a_{x_{i}} \geq y_{i}$.
It is guaranteed that $x_{1}<x_{2}<\ldots<x_{n}$.

Output

Print one integer: the minimum value of $\sum_{i=0}^{m} a_{i}$ modulo 998244353.

Example

	standard input		standard output
3	6	310	
1	100	42	
5	22		

Note

In the sample case, one optimal height sequence is $(0,100,82,63,43,22,0)$.

