

Problem B. Somewhere Over the Rainbow

input output

Input file:	standard inp
Output file:	standard out
Time limit:	2 seconds
Memory limit:	512 mebibytes

You want to draw a rainbow. The rainbow can be represented as a sequence of integer heights a_0, a_1, \ldots, a_m and must satisfy the following constraints:

- $a_0 = a_m = 0$ (the endpoints of the rainbow are 0 meters above the horizon),
- $2a_i > a_{i-1} + a_{i+1}$ for all 0 < i < m (the rainbow is convex),
- $a_{x_i} \ge y_i$ for *n* given pairs (x_i, y_i) .

You also want the rainbow to take as little space as possible, so please find the minimum possible value of $\sum_{i=0}^{m} a_i$. Since the answer may be very large, output it modulo 998 244 353.

Input

The first line of input contains two positive integers n and m $(1 \le n \le 2 \cdot 10^5, 1 \le m \le 10^9)$: the number of constraints and the length of the sequence.

Each of the next n lines contains two integers x_i $(1 \le x_i \le m-1)$ and y_i $(1 \le y_i \le 10^{18})$, which set conditions $a_{x_i} \ge y_i.$

It is guaranteed that $x_1 < x_2 < \ldots < x_n$.

Output

Print one integer: the minimum value of $\sum_{i=0}^{m} a_i$ modulo 998 244 353.

Example

standard input	standard output
3 6	310
1 100	
4 42	
5 22	

Note

In the sample case, one optimal height sequence is (0, 100, 82, 63, 43, 22, 0).