Problem F. Just Shuffle the Input

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

A permutation p of size n is a sequence of n pairwise distinct numbers from 1 to n. We denote the i-th of them by $p(i)$. By $p^{k}(i)$ we denote $\underbrace{p(p(p(\ldots(p(i)) \ldots)))}_{k \text { times }}$. A permutation is called cyclic if the minimal positive k for which $p^{k}(1)=1$ equals n.
You are given a string s of size n, a string t of size m and a cyclic permutation p of size m. You want to be a substring of s. To do this, you may apply the shuffle operation zero or more times. The shuffle operation consists of replacing t with t^{\prime}, such that the i-th letter of t equals the $p(i)$-th letter of t^{\prime} for each i from 1 to m.
Please find out if it is possible obtain a substring of s. If it is possible, find the minimum number of shuffles required.
Recall that a string a is a substring of s if there exists some l such that $1 \leq l \leq|s|-|a|+1$ and $s_{l+i-1}=a_{i}$ for every i from 1 to $|a|$.

Input

The first line of input contains two integers n and $m(1 \leq m \leq n \leq 200000)$. The second line contains m integers $p(1), \ldots, p(m)$: the permutation you can apply. The next two lines contain string s of length n and string t of length m, respectively. Both strings consist of lowercase English letters.
It is guaranteed that the permutation in the input is cyclic.

Output

If it is impossible to obtain a substring of s from t, output -1 . Otherwise print the minimum number of shuffles needed to obtain a substring of s.

Examples

	standard input	
3	2	0
2	1	standard output
aba		
ba		
7	4	1
3	4	2
dcabadc		
abcd		

