37th Petrozavodsk Programming Camp, Summer 2019 Day 6: MIPT Contest, Thursday, August 29, 2019

Problem G. Restoring a Permutation

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 mebibytes

You are given a positive integer n and two arrays a and b containing n integers each.

You need to find permutation p of length n such that for each $i \in \{1, 2, ..., n\}$ the following two conditions are satisfied:

- the length of longest increasing subsequence of p ending at position i is equal to a_i ,
- the length of longest decreasing subsequence of p starting at position i is equal to b_i .

Input

The first line of input contains a positive integer n ($1 \le n \le 2 \cdot 10^5$), the length of the permutation.

The second line contains n integers a_1, a_2, \ldots, a_n , where a_i $(1 \le a_i \le n)$: the length of longest increasing subsequence ending at position i.

The third line contains n integers b_1, b_2, \ldots, b_n , where b_i $(1 \le b_i \le n)$: the length of longest decreasing subsequence starting at position i.

Output

Print a line containing n space-separated integers p_1, p_2, \ldots, p_n : the desired permutation.

It is guaranteed that the answer exists. If there are multiple solutions, you may print any one of them.

Examples

standard input	standard output
5	3 2 1 4 5
1 1 1 2 3	
3 2 1 1 1	
6	2 1 4 3 6 5
1 1 2 2 3 3	
2 1 2 1 2 1	