Cheap Construction

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	256 megabytes

Blackwater Industries plans on building a space colony in the forest moon of Alpha Centauri A called Pandora, and has hired you for help.

The colony will consist of n domes, each with a positive height. The n domes will be in a single sequence, and we label the positions 1 to n from left to right. Using the latest advances in wormhole technology, it is possible to insert a new dome between any two existing domes, even if there isn't any space available between them! Of course, it is also possible to insert a new dome before the first dome, or after the last dome.

The space colony will be built in n steps starting from an empty sequence. The i th step is described by two integers (p_{i}, h_{i}) and it means:

- Insert a new dome with height h_{i}, so that the newly-inserted dome lands at position p_{i} after insertion.

More formally, right before the i th step, there will be exactly $i-1$ domes in the sequence, and the i th operation $\left(p_{i}, h_{i}\right)$ must satisfy $1 \leq p_{i} \leq i$. Then the meaning of the i th operation is:

- If $p_{i}=1$, then insert a new dome of height h_{i} before all currently-existing domes.
- If $p_{i}=i$, then insert a new dome of height h_{i} after all currently-existing domes.
- If $1<p_{i}<i$, then insert a new dome of height h_{i} between the domes at locations p_{i-1} and p_{i}.

Thus, right after the i th step, there will be exactly i domes in the sequence.
Now, for a sequence $S=\left[p_{1}, h_{1}, p_{2}, h_{2}, \ldots, p_{n}, h_{n}\right]$ of $2 n$ numbers, define $C(S)$ be the sequence of heights of the domes after performing the sequence of operations $\left(p_{1}, h_{1}\right),\left(p_{2}, h_{2}\right), \ldots,\left(p_{n}, h_{n}\right)$. Thus, $C(S)$ is a sequence of n numbers.
Blackwater Industries has drafted an initial plan. Their goal is to build a space colony whose dome heights are equal to $C(P)$, where P is a sequence of $2 n$ numbers given as input. However, they're cheap, so they want to build the same space colony but with a lower cost!
In the age of space travel, cost is measured differently. For two given sequences P and Q of length $2 n$, the sequence with lower cost is the one that is lexicographically smaller.
What is the cheapest Q which produces the same space colony as P ? In other words, what is the lexicographically smallest sequence Q of $2 n$ numbers such that $C(P)=C(Q)$?
Note: Let A of B be two distinct sequences. Then A is lexicographically smaller than B iff at least one of the following conditions hold:

- A is a prefix of B;
- A is not a prefix of B, and if i is the smallest index where they differ, then $A_{i}<B_{i}$.

Input

The first line of input contains a single integer t, the number of test cases. The descriptions of t test cases follow.

Each test case consists of multiple lines of input. The first line of each test case contains the integer n. Then n lines follow, where the i th line contains two space-separated integers p_{i} and h_{i}. The sequence P is now defined as $\left[p_{1}, h_{1}, p_{2}, h_{2}, \ldots, p_{n}, h_{n}\right]$.

- $1 \leq t \leq 1000$
- $1 \leq n \leq 500000$
- The sum of all n in a single test file is at most 500000
- $1 \leq p_{i} \leq i$
- $1 \leq h_{i} \leq n$

Output

For each test case, output n lines where the i th line contains two space-separated integers P_{i} and H_{i}. The sequence Q defined as $\left[P_{1}, H_{1}, P_{2}, H_{2}, \ldots, P_{n}, H_{n}\right]$ must be the lexicographically smallest sequence such that $C(P)=C(Q)$.

Example

$\left.\begin{array}{|ll|ll|}\hline & \text { standard input } & & \text { standard output } \\ \hline 1 & & 1 & 1 \\ 1 & 1 & 1 & 3 \\ 2 & 2 & 3 & 2\end{array}\right]$

Note

The sequence $P=[1,1,2,2,1,3]$ in the output corresponds to the 3 operations $(1,1),(2,2),(1,3)$ which produces the following sequence of heights:

- Initially, the sequence is [] (empty).
- After $(1,1)$, the heights are [1].
- After $(2,2)$, the heights are $[1,2]$.
- After $(1,3)$, the heights are $[3,1,2]$.

Thus, $C(P)=[3,1,2]$.
The sequence $Q=[1,1,1,3,3,2]$ in the output corresponds to the 3 operations $(1,1),(1,3),(3,2)$ which produces the following sequence of heights:

- Initially, the sequence is [] (empty).
- After $(1,1)$, the heights are [1].
- After $(1,3)$, the heights are $[3,1]$.
- After $(3,2)$, the heights are $[3,1,2]$.

Thus, $C(Q)=[3,1,2]$, and we have $C(P)=C(Q)$. Furthermore, one can show that $[1,1,1,3,3,2]$ is the lexicographically smallest such sequence.

