Expected Diameter

Input file:	standard input
Output file:	standard output
Time limit:	15 seconds
Memory limit:	256 megabytes

If you have some experience preparing problems for a contest, you might find the following fact counterintuitive: a random tree, chosen uniformly from all unrooted labelled trees with n nodes, has expected diameter $\Theta(\sqrt{n})$.

Why is this so unintuitive? Well, because if you've already prepared a tree problem before, then you might know that one of the simplest ways to generate a random tree (not necessarily <u>uniformly</u> random) is the following procedure, which we can call the "lopsided random generator":

- For each i from 2 to n:
 - Choose a j between 1 and i 1 randomly, and add the edge (i, j).
- Relabel the nodes by choosing a random permutation of $1, 2, \ldots, n$.

Although this is not at all a uniformly random choice of a unrooted labelled tree with n nodes—recall that there are n^{n-2} such trees by Cayley's formula—you might intuitively think that this is "close enough" to being uniformly random, and should give you the correct expected diameter. And the expected diameter of a tree generated with this procedure is $\Theta(\log n)$ (well, at least I think it is). However, this is incorrect! As it turns out, this procedure gives a highly lopsided probability distribution among the n^{n-2} trees, enough to change the expected diameter.

Let's put this newfound knowledge to the test. Suppose a random weighted, unrooted labelled tree with n nodes is chosen as follows:

- First, choose an unweighted unrooted labelled tree with n nodes uniformly randomly from the n^{n-2} such trees.
 - **Important Note:** The choice of unweighted unrooted labelled tree is **uniform** across the n^{n-2} distinct such trees; the "lopsided random generator" procedure described above will <u>not</u> be used.
- Next, for each edge, give it a weight of 1 with probability p_1 , and 2 with probability p_2 . Note that $p_1 + p_2 = 1$.

Given n, what is the expected diameter of a tree chosen this way? Find this number "modulo 998244353"; that is:

- Let m = 998244353.
- It can be shown that the answer is rational (assuming p_1 and p_2 are).
- Write the answer as u/v in lowest terms and with v positive.
- It can be shown (under the constraints of this problem) that there's a unique integer r such that $0 \le r < m$ and $rv \equiv u$ modulo m. Your goal is to find this unique r.

Notes:

- An unrooted labelled tree with n nodes is a connected acyclic undirected graph whose nodes are $1, 2, \ldots, n$.
- The **diameter** of a weighted graph is the largest weight of any simple path in it.
- A simple path is a path with no repeated nodes; that is, a sequence of distinct nodes s_0, s_1, \ldots, s_k such that there is an edge (s_i, s_{i+1}) for each *i*.
- The weight of a simple path is the sum of the weights of the edges in it.

Input

The input consists of a single line containing three space-separated integers n, x and y. The probabilities p_1 and p_2 are now defined as:

$$p_1 = x/y$$
$$p_2 = 1 - p_1$$

- $1 \le n \le 2000$
- $0 \le x \le y \le 1000$

Output

Output a single line containing the integer denoting the answer.

Examples

standard input	standard output
2 1 3	665496237
3 2 3	665496238

Note

For n = 2, there is only $2^0 = 1$ unweighted tree, and 2 weighted trees, each with diameters 1 and 2, with probabilities 1/3 and 2/3, respectively. The expected diameter is then 5/3, and the answer is r = 665496237 because it is the unique integer satisfying:

- $0 \le r < 998244353$
- $3r \equiv 5 \mod 998244353.$

For n = 3, there are $3^1 = 3$ unweighted trees, and 12 weighted trees.