Expected Diameter

Input file:	standard input
Output file:	standard output
Time limit:	15 seconds
Memory limit:	256 megabytes

If you have some experience preparing problems for a contest, you might find the following fact counterintuitive: a random tree, chosen uniformly from all unrooted labelled trees with n nodes, has expected diameter $\Theta(\sqrt{n})$.
Why is this so unintuitive? Well, because if you've already prepared a tree problem before, then you might know that one of the simplest ways to generate a random tree (not necessarily uniformly random) is the following procedure, which we can call the "lopsided random generator":

- For each i from 2 to n :
- Choose a j between 1 and $i-1$ randomly, and add the edge (i, j).
- Relabel the nodes by choosing a random permutation of $1,2, \ldots, n$.

Although this is not at all a uniformly random choice of a unrooted labelled tree with n nodes-recall that there are n^{n-2} such trees by Cayley's formula-you might intuitively think that this is "close enough" to being uniformly random, and should give you the correct expected diameter. And the expected diameter of a tree generated with this procedure is $\Theta(\log n)$ (well, at least I think it is). However, this is incorrect! As it turns out, this procedure gives a highly lopsided probability distribution among the n^{n-2} trees, enough to change the expected diameter.
Let's put this newfound knowledge to the test. Suppose a random weighted, unrooted labelled tree with n nodes is chosen as follows:

- First, choose an unweighted unrooted labelled tree with n nodes uniformly randomly from the n^{n-2} such trees.
- Important Note: The choice of unweighted unrooted labelled tree is uniform across the n^{n-2} distinct such trees; the "lopsided random generator" procedure described above will not be used.
- Next, for each edge, give it a weight of 1 with probability p_{1}, and 2 with probability p_{2}. Note that $p_{1}+p_{2}=1$.

Given n, what is the expected diameter of a tree chosen this way? Find this number "modulo 998244353 "; that is:

- Let $m=998244353$.
- It can be shown that the answer is rational (assuming p_{1} and p_{2} are).
- Write the answer as u / v in lowest terms and with v positive.
- It can be shown (under the constraints of this problem) that there's a unique integer r such that $0 \leq r<m$ and $r v \equiv u$ modulo m. Your goal is to find this unique r.

Notes:

- An unrooted labelled tree with n nodes is a connected acyclic undirected graph whose nodes are $1,2, \ldots, n$.
- The diameter of a weighted graph is the largest weight of any simple path in it.
- A simple path is a path with no repeated nodes; that is, a sequence of distinct nodes $s_{0}, s_{1}, \ldots, s_{k}$ such that there is an edge (s_{i}, s_{i+1}) for each i.
- The weight of a simple path is the sum of the weights of the edges in it.

Input

The input consists of a single line containing three space-separated integers n, x and y. The probabilities p_{1} and p_{2} are now defined as:

$$
\begin{aligned}
& p_{1}=x / y \\
& p_{2}=1-p_{1}
\end{aligned}
$$

- $1 \leq n \leq 2000$
- $0 \leq x \leq y \leq 1000$

Output

Output a single line containing the integer denoting the answer.

Examples

standard input	standard output	
213	3	665496237
3	3	665496238

Note

For $n=2$, there is only $2^{0}=1$ unweighted tree, and 2 weighted trees, each with diameters 1 and 2 , with probabilities $1 / 3$ and $2 / 3$, respectively. The expected diameter is then $5 / 3$, and the answer is $r=665496237$ because it is the unique integer satisfying:

- $0 \leq r<998244353$
- $3 r \equiv 5$ modulo 998244353 .

For $n=3$, there are $3^{1}=3$ unweighted trees, and 12 weighted trees.

