Swirly Sort

Input file:
Output file:
standard input
Time limit:
Memory limit:
standard output

1 second
256 megabytes

You're given an array A containing n integers, and an integer $k(1 \leq k \leq n)$. You would like to transform it into a sorted array.
You can perform the following operations on A any number of times:

- Choose k indices $1 \leq i_{1}<i_{2}<i_{3}<\ldots<i_{k} \leq n$ and cyclically shift the values at these indices.
- That is, $A\left[i_{1}\right]$ moves to index $i_{2}, A\left[i_{2}\right]$ moves to index $i_{3}, \ldots, A\left[i_{k}\right]$ moves to index i_{1}.
- Note that the indices you choose for the cyclic shift must always be increasing.
- This operation has cost 0 .
- Choose an index i, and either increment or decrement $A[i]$ by 1 .
- This operation has cost 1 .

Find the minimum total cost of operations to transform the array into a sorted array.

Notes:

- The array A is one-indexed.
- An array X is sorted if $X_{1} \leq X_{2} \leq X_{3} \leq \ldots$

Input

The first line of input contains a single integer t, denoting the number of test cases.
Each test case consists of two lines of input.

- The first line contains two space-separated integers n and k.
- The second line contains n space-separated integers $A_{1}, A_{2}, \ldots, A_{n}$, the initial values of array A.
- $1 \leq t \leq 10^{5}$
- $1 \leq n \leq 3 \cdot 10^{5}$
- $1 \leq k \leq n$
- $1 \leq A[i] \leq 10^{9}$
- The sum of $n \cdot k$ across all test cases is $\leq 3 \cdot 10^{5}$.

Output

For each test case, print a line containing an integer: the minimum cost to transform A into a sorted array.

Example

	standard input		standard output	
4			3	
4	1		0	
6	4	3	7	
4	2		2	
6	4	3	7	
4	3			
6	4	3	7	
4	4			
6	4	3	7	

Note

In all samples, the initial array is $A=[6,4,3,7]$.

- For $k=1$, we subtract 2 from the first element and add 1 to the third element, turning the array into $A=[4,4,4,7]$.
- For $k=2$, we can choose $i_{1}=1$ and $i_{2}=3$, transforming the array into $[3,4,6,7]$ which is sorted. This has a cost of 0 .
- For $k=3$, the following process is optimal:
- Choose $i_{1}=1, i_{2}=2, i_{3}=3$. The array becomes $[3,6,4,7]$.
- Choose $i_{1}=1, i_{2}=2, i_{3}=3$ again. The array becomes $[4,3,6,7]$.
- Subtract 1 from the first element to obtain $[3,3,6,7]$.
- For $k=4$, the following is optimal:
- Add 1 to the first element. The array becomes $[7,4,3,7]$.
- Subtract 1 from the second element. The array becomes $[7,3,3,7]$.
- Choose all four elements and cyclic shift to obtain $[7,7,3,3]$.
- Cyclic shift again and obtain $[3,7,7,3]$.
- Cyclic shift again and obtain $[3,3,7,7]$.

