Problem F. Friendship Circles

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Let $p_{0}, p_{1}, \ldots, p_{n-1}$ be n points in the plane. We say that two points are friends if one can draw a circle that contains both points in its interior and all the other $n-2$ points in its exterior. Print the indices of the points that are friends with p_{0}.
It is guaranteed that there is no circumference containing p_{0} and three or more other points. It is also guaranteed that there is no line containing p_{0} and two or more other points.

Input

The first line contains an integer t, the number of test cases $\left(1 \leq t \leq 10^{4}\right)$.
Each test case starts with a line containing an integer $n\left(2 \leq n \leq 10^{5}\right)$, the number of points. It is followed by n lines, each one containing two integers x_{i} and $y_{i}\left(-10^{9} \leq x_{i}, y_{i} \leq 10^{9}\right)$: the coordinates of the i-th point.
The tests are not explicitly targeting precision issues. In particular, it is guaranteed that, if we moved p_{0} by a distance of at most 10^{-6} units in any direction, the answer would remain the same.
The total number of points in all test cases does not exceed 10^{5}.

Output

For each test case, print a line containing one integer m, the number of friends of p_{0}, followed by m integers: the indices of the friends of p_{0} in lexicographical order.

Example

\left.| standard input | | | standard output |
| :--- | :--- | :--- | :--- |
| 2 | | | 2 |
| 4 | 1 | 2 | |
| 1 | 0 | 1 | 2 |$\right]$

