Devil's Share

You are given a number, \mathbf{x}. The devil wants his share of the number. He will take the largest subnumber with K digits. Minimize the devil's share by reordering the digits in number \mathbf{x}.

Formally, you have at your disposal $\mathrm{S}(1 \leq \mathrm{s} \leq 100000$) digits between 1 and 9 , inclusively. Given an integer $\mathrm{K}(1 \leq \mathrm{K} \leq \mathrm{s}$), you are to create a number x using all the digits at your disposal, such that the largest length K substring of \mathbf{X} is as small as possible.

Clarification: A length K substring of \mathbf{x} is a base 10 integer comprising of K consecutive digits of \mathbf{x} in the very same order. There are $\mathbf{s}-\mathrm{K}+1$ such substrings in number \mathbf{x}.

Input

The first line of input contains one integer $T(1 \leq T \leq 100000)$ - the number of test scenarios to analyse.

The description of T test scenarios follows. Each test scenario consists of two lines:

The first line contains one integer K - the length of all the substrings to consider.

The second line contains 9 space-separated integers: $D_{1}, D_{2}, \ldots, D_{9}$, where D_{i} represents the number of digits i at your disposal. ($0 \leq D_{i}, D_{1}+D_{2}+\ldots+D_{9}=S$).

The sum of S over all test scenarios will not exceed 1000000 .

Output

For each test scenario, print \mathbf{x} - the number you created, on a separate line.

If there are several numbers \mathbf{x} with the same smallest possible length K substring you can output any of them.

Subtasks

(1) $0 \leq D_{1}, D_{2}, D_{3}, D_{4} \leq 3, D_{5}=D_{6}=\ldots=D_{9}=0$, $1 \leq T \leq 1536$, scenarios will not repeat (13 points)
(2) $\mathrm{K}=2$ (14 points)
(3) $\mathrm{D}_{3}=\mathrm{D}_{4}=\ldots=\mathrm{D}_{9}=0$ (29 points)
(4) no additional constraints (44 points)

Example(s)

| Standard Input | | Standard Output | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | | | | | | | | | 2313 |
| 2 | | | 0 | 62616236261623778899 | | | | | |
| 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 623616236162361778899 |
| 2 | 4 | 2 | 0 | 0 | 6 | 2 | 2 | 2 | |
| 7 | | | | | | | | | |
| 3 | 3 | 3 | 0 | 0 | 6 | 2 | 2 | 2 | |

Explanation:

There are three test scenarios to consider in the example.
In the first scenario $\mathrm{K}=\mathbf{2}$ and you have to arrange digits 1233 .
One optimal \mathbf{x} is 2313 , with the following length 2 substrings: 23,31 and 13 , the largest being 31. No other \mathbf{x} has a smaller largest length 2 substring.
Another optimal \mathbf{x} would be 3123 , since its largest length 2 substring is also 31 .

In the second scenario $\mathrm{K}=7$ and you have to arrange digits 11222233666666778899 . One optimal \mathbf{x} is 62616236261623778899 with the largest length 7 substring 6261623.

In the third scenario $\mathrm{K}=\mathbf{7}$ and you have to arrange digits 111222333666666778899 . One optimal \mathbf{x} is 623616236162361778899 with the largest length 7 substring 6236177.

