

Problem F. Film Critics

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

The premier of the anticipated action film *No Thyme to Fry* is right around the corner, and it is time to give early screenings to film critics so that they can review it. A small cinema has been selected to show these early screenings.

There are *n* critics numbered from 1 to *n* scheduled to watch the movie early, and each of them will watch it separately. After watching it, they will immediately give it a score from 0 to *m*. Susan, the cinema owner, has carefully looked at every critic's social media and already knows that the *i*th critic thinks the movie is worth a score of a_i . However, the *i*th critic will not simply give the movie a score of a_i like you would expect, because they also take into account the scores that the other critics gave. Here is how they behave:

- 1. The first critic to arrive will be so happy that they are the first to review the movie that they will give it a score of m regardless of their initial opinion.
- 2. Every subsequent critic will look at the average score given by the previous critics. If this number is smaller than or equal to the initial opinion a_i then the critic will give it a score of m, otherwise they will give it a 0.

Susan thinks the critics' behaviour is ridiculous. She has watched the movie, and it is clearly worth a score of exactly k/n and nothing else! But Susan is the owner of the cinema, so she gets to decide in what order to invite the critics. Your task is to find a permutation of 1, 2, ..., n so that if the critics arrive in this order the average score will be exactly k/n.

Input

The first line of input contains three integers n, m and k $(1 \le n \le 2 \cdot 10^5, 1 \le m \le 10^4, 0 \le k \le n \cdot m)$. The second line contains the n integers a_1, a_2, \ldots, a_n $(0 \le a_i \le m$ for each i), the n critic scores as described above.

Output

If the critics can be ordered in such a way that the resulting average score is exactly k/n, then output n integers p_1, \ldots, p_n $(1 \le p_i \le n)$, where p_i indicates that the *i*th critic to visit the cinema is the critic numbered p_i . This list of integers should be a permutation such that the average score given by the critics is k/n. If there are multiple solutions any one will be accepted.

Otherwise, if there is no such way to order the critics, output "impossible".

Examples

standard input	standard output
5 10 30	3 5 2 1 4
10 5 3 1 3	
5 5 20	impossible
5 3 3 3 3	