INFORMATICS

Restore Array

Your task is to determine one possible binary array \mathbf{A} of length \mathbf{N} that abides by \mathbf{M} given constraints of the form:
($\mathbf{l}, \mathbf{r}, \mathbf{k}$, value) - the \mathbf{k}-th smallest element in subarray $\mathrm{A}[1 . . \mathrm{r}]$ is value $(0 \leq 1 \leq r<N, 1 \leq k \leq r-1+1,0 \leq$ value $\leq 1)$. Please note that array A is 0 -indexed.

Input

The first line of input contains two integers N and $\mathrm{M}(1 \leq \mathrm{N} \leq 5000,1 \leq \mathrm{M} \leq 10000)$ - the length of array \mathbf{A} and the number of constraints.

The next m lines describe the constraints. Each line contains four integers $\mathbf{l}_{\mathrm{i}}, \mathbf{r}_{\mathrm{i}}, \mathbf{k}_{\mathrm{i}}$, value ${ }_{i}$, describing the i-th constraint.

Output

The first line of the output contains \mathbf{N} integers - one possible binary array \mathbf{A}. If there are several that abide by all \mathbf{M} constraints you may output any of them. If there is no such array you must instead output the single integer -1 .

Subtasks

(1) $1 \leq \mathrm{N} \leq 18,1 \leq \mathrm{M} \leq 200$ (7 points)
(2) $1 \leq \mathrm{N} \leq 5000,1 \leq \mathrm{M} \leq 10000$, for all constraints $\mathrm{k}=1$ holds (13 points) (3) $1 \leq N \leq 5000, \quad 1 \leq M \leq 10000$, for all constraints $\mathbf{k}=1$ or $k=(r-1+1)$ holds (25 points)
(4) $1 \leq \mathrm{N} \leq 5000,1 \leq \mathrm{M} \leq 10000$ (55 points)

Example(s):

Standard Input	Standard Output
45	0100
0121	
0220	
2210	
01110	
1210	

ROMANAN MASTER OF

Explanation:

There are several binary arrays that abide by all the constraints. One of them is 0100 because:
(1) The 2-nd smallest element among $\underline{0 \quad 1} \theta-\theta$ is 1 .
(2) The 2-nd smallest element among $010 \quad \theta$ is 0 .
(3) The 1 -st smallest element among $\theta 1 \underline{0} \theta$ is 0 .
(4) The 1 -st smallest element among $\underline{01} \theta-\theta$ is 0 .
(5) The 1 -st smallest element among $\theta \underline{1} 0 \quad \theta$ is 0 .

