

Restore Array

Your task is to determine one possible **binary** array \mathbf{A} of length \mathbf{N} that abides by \mathbf{M} given constraints of the form:

(1, r, k, value) - the k-th smallest element in subarray A[1..r] is value $(0 \le 1 \le r < N, 1 \le k \le r - 1 + 1, 0 \le value \le 1)$. Please note that array A is 0-indexed.

Input

The first line of input contains two integers **n** and **m** ($1 \le n \le 5 000$, $1 \le m \le 10 000$) - the length of array **A** and the number of constraints.

The next **M** lines describe the constraints. Each line contains four integers l_i , r_i , k_i , **value**_i, describing the *i*-th constraint.

Output

The first line of the output contains \mathbf{N} integers - one possible **binary** array \mathbf{A} . If there are several that abide by all \mathbf{M} constraints you may output any of them. If there is no such array you must instead output the single integer -1.

Subtasks

(1) $1 \le N \le 18$, $1 \le M \le 200$ (7 points) (2) $1 \le N \le 5000$, $1 \le M \le 10000$, for all constraints k = 1 holds (13 points) (3) $1 \le N \le 5000$, $1 \le M \le 10000$, for all constraints k = 1 or k = (r - 1 + 1) holds (25 points) (4) $1 \le N \le 5000$, $1 \le M \le 10000$ (55 points)

Example(s):

Standard Input	Standard Output
4 5	0 1 0 0
0 1 2 1	
0 2 2 0	
2 2 1 0	
0 1 1 0	
1 2 1 0	

Explanation:

There are several binary arrays that abide by all the constraints. One of them is $0 \ 1 \ 0 \ 0$ because:

- (1) The 2-nd smallest element among <u>0 1</u> $\theta \rightarrow \theta$ is 1.
- (2) The 2-nd smallest element among $\underline{0 \ 1 \ 0} \ \oplus$ is 0.
- (3) The 1-st smallest element among $\theta \rightarrow 1$ <u>0</u> θ is 0.
- (4) The 1-st smallest element among <u>0 1</u> $\theta \rightarrow \theta$ is 0.
- (5) The 1-st smallest element among \oplus <u>1</u> <u>0</u> \oplus is 0.