

Problem E. Minimum Spanning Tree

Input file:	standard	input
Output file:	standard	output
Time limit:	1 second	
Memory limit:	256 mebib	ytes

MianKing has a graph with n nodes and m edges, where the *i*-th edge (x_i, y_i) has an edge weight of w_i .

The Minimum Spanning Tree of the graph is a spanning tree with the minimum sum of edge weights.

MianKing forgot the weights $w_{1...m}$, but he still remembers that $w_{1...m}$ are a permutation of $\{1...m\}$ and that the edge set of the Minimum Spanning Tree of this graph consists of the first n-1 edges.

Now you need to help MianKing to calculate how many $w_{1...m}$ satisfy the conditions above. The answer may be very large, so you only need to output the answer modulo 998 244 353.

Input

The first line contains two integers n and m $(2 \le n \le 20, n-1 \le m \le 100)$.

Then there are m lines, where the *i*-th line contains two integers x_i and y_i $(1 \le x_i, y_i \le n)$.

It is guaranteed that the edges $(x_1, y_1), \ldots, (x_{n-1}, y_{n-1})$ form a tree with n nodes.

Note that the graph may have multiple edges and self-loops.

Output

Output the answer modulo $998\,244\,353$.

Examples

standard input	standard output
3 3	2
1 2	
2 3	
3 1	
4 5	25
1 2	
2 3	
2 4	
1 4	
1 2	
3 6	720
1 2	
2 3	
1 1	
1 1	
1 1	
1 1	