ICPC Training Camp: Common Contest 2, Wednesday, February 3, 2021

Problem M. Discrete Logarithm is a Joke

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
256 mebibytes

Let's take $M=10^{18}+31$ which is a prime number, and $g=42$ which is a primitive root modulo M, which means that $g^{1} \bmod M, g^{2} \bmod M, \ldots, g^{M-1} \bmod M$ are all distinct integers from $[1 ; M)$. Let's define a function $f(x)$ as the smallest positive integer p such that $g^{p} \equiv x(\bmod M)$. It is easy to see that f is a bijection from $[1 ; M)$ to $[1 ; M)$.
Let's then define a sequence of numbers as follows:

- $a_{0}=960002411612632915$ (you can copy this number from the sample);
- $a_{i+1}=f\left(a_{i}\right)$.

Given n, find a_{n}.

Input

The only line of input contains one integer $n\left(0 \leq n \leq 10^{6}\right)$.

Output

Print a_{n}.

Examples

standard input	standard output
0	960002411612632915
1	836174947389522544
300300	263358264583736303
1000000	300

