

Problem M. Discrete Logarithm is a Joke

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	256 mebibytes

Let's take $M = 10^{18} + 31$ which is a prime number, and g = 42 which is a primitive root modulo M, which means that $g^1 \mod M, g^2 \mod M, \ldots, g^{M-1} \mod M$ are all distinct integers from [1; M). Let's define a function f(x) as the smallest positive integer p such that $g^p \equiv x \pmod{M}$. It is easy to see that f is a bijection from [1; M) to [1; M).

Let's then define a sequence of numbers as follows:

- $a_0 = 960\,002\,411\,612\,632\,915$ (you can copy this number from the sample);
- $a_{i+1} = f(a_i)$.

Given n, find a_n .

Input

The only line of input contains one integer $n \ (0 \le n \le 10^6)$.

Output

Print a_n .

Examples

standard input	standard output
0	960002411612632915
1	836174947389522544
300300	263358264583736303
1000000	300