

Problem A. Best Subsequence

Input file:	standard input
Output file:	standard output
Time limit:	7 seconds
Memory limit:	1024 mebibytes

We call W a k-best number of sequence $B_{1...m}$ if there exists a sequence $C_{1...k}$ satisfying the following two conditions:

- 1. $C_{1...k}$ is a subsequence of $B_{1...m}$.
- 2. $\forall i \in [1, k], C_i + C_{(i \mod k)+1} \le W.$

Given a sequence $A_{1...n}$, you need to answer Q questions. Each question consists of three integers L, R, K, and you need to calculate the minimum K-best number of $A_{L...R}$.

Recall that C is a subsequence of B if and only if we can obtain C by removing some elements of B (possibly none or all).

Input

The first line contains two integers n and Q $(1 \le n, Q \le 10^5)$.

The second line contains n integers $A_{1...n}$ $(0 \le A_i \le 10^9)$.

Then Q lines follow. Each of them contains three integers L, R, K, representing a question $(1 \le L \le R \le n; 1 \le K \le R - L + 1)$.

Output

For each question, output a single line with a single integer: the answer.

Example

standard input	standard output
5 3	8
26154	3
154	6
1 3 2	
153	