Problem B. Binary Search Tree

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

This problem is about Binary Search Trees (BST), a basic data structure. The structure is a rooted binary tree which stores values in its nodes. If node x contains value a, all values in the left subtree of x are less than a, and all values in the right subtree of x are greater than a.
In order to unify the details, we provide an implementation of finding a value a in a BST rooted at node x :

```
void find(x, a) {
    if (x == 0 || w[x] == a) return;
    if (w[x] > a) find(l[x], a);
    else find(r[x], a);
}
```

Here, $l[x]$ is the left child of $x, r[x]$ is the right child of x, and $w[x]$ is the value of x. Specifically, if x does not have a left child (right child), $l[x](r[x])$ is 0 .
We define $A($ root,$a)$ as the array of all nodes visited by find (root, $a)$. We also define the cost of find (root, a) as

$$
\sum_{v \in A(\text { root }, a)} w[v] .
$$

Now there are n empty BSTs and m operations. Your task is to process these operations quickly. There are two different kinds of operations:

- "1 $l r w$ ". For each $i \in[l, r]$, insert an integer w into the i-th BST. It is guaranteed that w is not present in these BSTs. Insertion starts at the root, goes the same as find, but instead of making the last find $(0, w)$ call, creates a new node with value w there and returns.
- "2 x a". Calculate the cost of finding a in the x-th BST.

Input

The first line contains two integers, n and $m\left(1 \leq n, m \leq 2 \cdot 10^{5}\right)$, indicating the number of BSTs and the number of operations.
Then m lines follow. Each line contains description of an operation and is formatted as either " $1 l r w$ " $\left(1 \leq l \leq r \leq n ; 1 \leq w \leq 10^{9}\right)$ or " $2 x a$ " $\left(1 \leq x \leq n ; 1 \leq a \leq 10^{9}\right)$.
It is guaranteed that all inserted numbers (w in operations of the first kind) are different from each other.

Output

For each operation of the second kind, output a single line with a single integer: the cost.

Example

		standard input	
3	9		2
1	1	2	2
1	1	3	1
1	2	3	3

