Problem C. Circle

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

There are two points A and B and an obstacle circle O on a Cartesian plane.
Now, you need to choose a point C on the boundary of O and then move both points A and B to point C. While moving, the path of either point A or B can only go outside circle O or touch its boundary.
Your goal is to minimize the total moving distance, that is, the sum of the moving distances of A and B.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{6}\right)$, the number of test cases.
Each test case is given on a single line and contains seven integers $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, r$, where $-10^{3} \leq x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3} \leq 10^{3}$ and $1 \leq r \leq 10^{3}$. Here, $A=\left(x_{1}, y_{1}\right), B=\left(x_{2}, y_{2}\right)$, and O is a circle centered at $\left(x_{3}, y_{3}\right)$ with radius r. It is guaranteed that neither A nor B is strictly inside O.

Output

For each test case, output a single line with a single real number: the answer rounded to the third decimal place. It is guaranteed that the fourth decimal place is neither 4 nor 5 .

Example

| standard input | | | | | | | standard output | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0 | 2 | 2 | 1 | 1 | 1 | 3.571 | |
| 0 | 0 | 2 | 2 | 1 | 0 | 1 | 2.927 | |
| 0 | 0 | 2 | 2 | 1 | -1 | 1 | 3.116 | |

