Problem B. One More Problem About DFT

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
512 mebibytes

Let p be a prime number and $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ be an array of n integers, where $p=K n+1$ for some positive integer K. We say that the array $\hat{a}=\left(\hat{a}_{0}, \hat{a}_{1}, \ldots, \hat{a}_{n-1}\right)$ is the Discrete Fourier Transform of the array a if for every $k=0,1, \ldots, n-1$ the following holds:

$$
\hat{a}_{k}=\left(\sum_{j=0}^{n-1} a_{j} w^{j k}\right) \bmod p
$$

and we simply write $\hat{a}=\operatorname{DFT}(a)$. Here w denotes a primitive n-th root of unity modulo p, that is, we have $w^{n} \equiv 1$ $(\bmod p)$ and, for every i such that $0<i<n, w^{i} \not \equiv 1(\bmod p)$.
Note that there can be multiple choices for w, so the DFT won't be unique. Let us clarify how to uniquely find it for this problem. Let g be a generator modulo p, that is, for every x such that $0<x<p$, there exists a positive integer r such that $0 \leq r<p-1$ and $x=g^{r} \bmod p$. You can find the smallest positive value for g that works and choose $w=g^{K} \bmod p$.
Now we define $\operatorname{DFT}^{(m)}(a)=\underbrace{\operatorname{DFT}(\operatorname{DFT}(\ldots \operatorname{DFT}(a) \ldots))}_{m \text { times }}$, so your task is just to find $\operatorname{DFT}^{(m)}(a)$.

Input

The first line contains three space-separated integers: $n\left(2 \leq n \leq 3 \cdot 10^{5}\right), p\left(5 \leq p \leq 10^{9}+7\right)$, and $m\left(0 \leq m \leq 10^{18}\right)$, the parameters of the problem described above. It is guaranteed that p is prime and that n divides $p-1$ evenly.
The second line contains n space-separated integers $a_{0}, a_{1}, \ldots, a_{n-1}\left(0 \leq a_{i}<p\right)$, the array a.

Output

Output n space-separated integers $a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{n-1}^{\prime}$, the resulting array after doing the operation stated in the problem.

Example

standard input	standard output
$\begin{array}{llllll} 6 & 614 & & & & \\ 24 & 17 & 39 & 52 & 25 & 7 \end{array}$	102142468

Note

In the sample test case, the smallest possible generator for $p=61$ is $g=2$. We have that $K=\frac{61-1}{6}=10$, so we choose $w=2^{10} \bmod 61=48$ to be the primitive 6 -th root of unity modulo 61 . The first iterations of the DFT are as follows:

- $\operatorname{DFT}^{(0)}(a)=(24,17,39,52,25,7)$
- $\operatorname{DFT}^{(1)}(a)=(42,55,25,12,39,32)$
- $\operatorname{DFT}^{(2)}(a)=(22,42,28,7,51,41)$
- $\operatorname{DFT}^{(3)}(a)=(8,9,51,11,28,25)$
- $\mathrm{DFT}^{(4)}(a)=(10,2,1,42,46,8)$

