Problem H. Easter Gift

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

Wesley got an array of N elements $\left(a_{1}, a_{2}, \ldots, a_{N}\right)$ for Easter, and is eager to sort it (so that $\left.a_{1} \leq a_{2} \leq \ldots \leq a_{N}\right)$. Bored, Wesley decided to make it harder on himself by only allowing himself to swap two elements if the absolute difference between them is less than or equal to K. Note that the elements can be anywhere; as long as their absolute difference is less than or equal to K, Wesley can swap them.
Unfortunately, Wesley quickly realized that it might not be possible to sort the array. He then wonders: what is the minimum value of K required to be able to sort the array?

Input

The first line contains an integer N, the number of elements in the array ($1 \leq N \leq 2 \cdot 10^{5}$).
The next line contains N integers $a_{1}, a_{2}, \ldots, a_{N}$, the array itself $\left(1 \leq a_{i} \leq 10^{18}\right)$.

Output

Output the minimum value of K required to be able to sort the array. If the elements are already sorted, you should output 0 .

Example

| standard input | | | | | | | standard output |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 4 4 7 14 12 10 2 | | | | | | | |

