Problem M. Number of Colorful Matchings

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are given a graph G with n black nodes and n white nodes, where every edge can only connect a black node and a white node (in other words, the graph is bipartite).
Each edge in G has a color: either blue or red. No two edges of the same color can connect the same pair of vertices (in other words, there are no same-color parallel edges).

For every k from 0 to n, please count the number of perfect matchings in G that contain exactly k red edges and $n-k$ blue edges. Recall that a perfect matching is a subset of n edges in which no two edges can share a common endpoint. Since the number could be large, you are only required to output the answers modulo 2 .

Input

The first line contains a non-negative integer $n(1 \leq n \leq 300)$.
Each of the next n lines contains n characters with no spaces. Together, these lines describe the adjacency matrix of red edges. The j-th character on the i-th line is " 1 " if there is one red edge connecting the i-th black node and the j-th white node, and " 0 " otherwise.
The next n lines describe the adjacency matrix of blue edges, in the same format as above.

Output

Output $n+1$ lines containing your answers for $k=0,1,2, \ldots, n$ respectively. Remember that you only need to output the answer modulo 2 .

Example

standard input		standard output
2	0	
11	0	1
00		
11		

Note

In the example, there exist three perfect matchings:

1. red $(1,1)$, blue $(2,2)$

2 . red $(1,2)$, blue $(2,1)$
3 . red $(1,2)$, red $(2,1)$

