Editorial
RMI 2020

1 Task Floppy

Author: Andrei-Costin Constantinescu
With thanks to Daniel-Ilie Apostol for the description below

1.1 Solution storing N [logN]| bits (28 points)

For this solution, we first observe that we can normalize the values of the array.
That way all numbers will be in the range [0...N-1], which means we can store
the first [logN'] bits of every number in the array. Now, we send the normalized
array to the second function using N [logN| bits in total.

For the queries we can use a segment tree, or any range query data structure
that has O(logN) or O(v/N) complexity per query.

1.2 Solution storing only 2N bits (100 points)

We will consider the Cartesian Tree of the array.

The Cartesian Tree can be defined recursively as a tree where the root is the
minimum value of the sequence, and the left and right subtrees are the Cartesian
trees for the subsequences to the left and right of the root value. We can create
this tree easily just by using a max stack (in linear time).

We know that the Cartesian Tree is unique and only defined for an array of
distinct values.

Now, let’s see how we can send this structure to the other function using
2N bits, so that we can restore it. Let’s run a DFS algorithm from the root of
the tree and add (in the order of the tree traversal) 2 bits for each node (the
first one indicating if the node has a left son and the second one if it has a
right son).

We can restore the Cartesian Tree simulating the DFS algorithm again,
because we know the adjacency list of every node in the order they were traversed
in the previous DFS.

We can also restore the position of every node of the tree in the initial array.
For every node in the tree its corresponding position in the initial array is equal
to its position in the inorder of the tree traversal.

Let’s name the corresponding node for every position Tag[pos], where 0 <
pos < N — 1.
Now, the answer for every query [L..R] is simply LCA(Tag[L], Tag[R)).

2 Task Brperm

Author: Tamio Vesa-Nakajima
With thanks to Mihai-Cristian Popescu and Alexandru Petrescu for the descrip-
tion below

2.1 O(2¥ x K) per query

For every query, we compute the br-permutation of the given length on the spot,
in O(2K x K) time (inverting the bits of each index one by one), and check the
permuted string against the original one with brute-force in O(2%)

2.2 O(N xlog*(N)+ Q)

Given a generic string x, define:
e basic_hash(base, zg, ..., Tm_1) = Z?SOI base™ L x
e R = largest integer such that 2% < N

e B = an integer denoting a base, which can be SIGMA + 1 (i.e. 27) or 28,
or 31, or whatever

R—k

e for any integer 0 < k <R, straight_hash(zg..., x2;_1) = basic_hash(B?

)
e BR_hash(B,zo,...,x9c_1) = B2" "«BR_hash(B, zo, T2, ..., ¥or _o)+BR_hash(z1, z3, ..., Tor_1)

Notice that a string is br-palindrome if its straight_hash is the same as its
BR_hash.

Let’s precompute a[k][z] = 2¥ th ancestor of x, some partial straight hashes
(so that we could get the value of a required straight_hash) and jump[l][k][z] =
basic,h(wh(BzRfl7ch[ac]7 chlalk][x]], ..., ch[a[k][a[k][...(2" — 1) times)[a[k][z]]...]).

For every query, we must only compare the corresponding straight hash with
JumplO][K][x].

2.3 O(N xlog(N) + Q)

For better complexity we can change the way we calculate the BR_hash of a
subsequence:

o BR_hash(B,zo, ..., x0c_1) = B2 "*BR_hash(B, Zot—1, Tok—11, .., Tk _1)+
BR_hash(B,xg, X1, ..., Tor-1_1)

For every query, we must only compare the corresponding straight hash with
the coresponding BR_hash.

3 Task Peru

Author: Alexandru Petrescu
With thanks to Alexandra-Maria Udristoiu for the description below

3.1 O(N?)

Instead of crushing the beetles with a strength smaller than an integer F in a
contiguous subsequence of size K we can choose to crush all the beetles in a
contiguous subsequence of size smaller or equal to K. The effort F will be equal
with the maximum .S; in the chosen subsequence. We will now use the following
dynamic programming: dp; = minimum cost to crush the first i beetles.

dp;, = min(dp; + max(Sj41, ..., S;)), where i —j +1 < K.

3.2 O(NlogN)

Another observation is that the effort E of the contiguous subsequence won’t
change if we add beetles with strength smaller than E. Now, when calculating
dp; we can consider only those positions j for each S; is maximum of the con-
tiguous subsequence from j to i. Let us denote the array of these positions by P,
from left to right. Now, we must consider, as candidates for dp; the following:

dppk, + S Pri1

This is almost everything: We need to consider the case when position j is
precisely i — K, i.e. have Py = ¢ — K artificially.

We can use a deque to get the array P. In order to find the minimum value
of cost(Py) = dpp, + Sp,_,, we can use a min heap.

3.3 O(N)

Consider this array P. We know Sp, is decreasing. Over time, array P gets values
inserted on the right and gets values popped both on the right and on the left.
Querying on array P can be split into two parts. Querying on those values that
get popped on the right and querying on those values that get popped on the
left.

We can predict whether a certain element of P will be popped on the right
(denote by R) or on the left (denote by L): It’s enough to know whether S; is
maximum over Sj;. 4Kk —1)-

We will keep two data structures, one for R and one for L. We will also
simulate the operations on P in order to update these two data structures.

The purpose of the data structures is to query for the minimum of cost() for
the positions in place. Because we have divided the task in two, the operations
for each subtask are manageable in linear time!

For R we can use a stack which also keeps for R}, the minimum of cost() for
the sequence Ry, ... Ri. Each element Ry will be removed from the stack by
the next element with bigger strength (when R will also no longer belong to
P)

For L we can use a deque to find the minimum cost() of the elements which
currently belong to L. Because each Sp; is maximum over S|z, .r,+x-1), it
will be part of P until ¢ — 7 > K, when it will also be popped on the left from
the deque. If cost(L;) is bigger than cost(L;41) we can pop L; from the deque,
because L1 will belong to P for longer.

4 Task Nicelines

Author: Tamio Vesa-Nakajima, Adrian Panaete

In the following subsections, let V' be the maximal coordinate of any point.
Furthermore, let

First, consider the problem “given a line x = x(, for some zg > V, find the
intersection of the hidden lines with x = z¢”. How can we solve this problem?
There are two solutions that we take into account:

Solution with NlogV queries. Consider the function

f(t) = query (zo,t)

Observe that f(¢) is the sum of the distances from all the lines to (zg,t).
The distance from one line y = ax + b to (zo,t) is a piecewise linear function
(in t), where the slope of the function changes precisely at the intersection of
y = ax+b with z = xy. Furthermore the distance of one line to (xg,t) is concave
(in t). Thus the sum of these distances f is a concave piecewise linear function
where the slope changes only at the intersection of the hidden lines with = = x.
Therefore, to solve the subproblem we’ve asked ourselves, we need only to find
the points at which f changes slope. To do this in O(N log V') queries is simple:
just use a divide and conquer solution. To find all of the slope changes of f
within an interval (x,y), first check if

S+ 1) _ (x;y)

If so, then there are no slope changes. Otherwise, recursively find all the slope

changes in (z, Z5¥) and (21¢,y).

Solution with 4N + 2 queries. The solution now is a rather cleverer divide
and conquer solution, that operates more on f itself. Note that if we select
xo > 3V, then we can prove that the intersections of the hidden lines with
x = x¢ are within disjoint intervals of length 2V — at most one hidden line per
interval — and that there are intervals of length V' within which no intersection
can appear. Translate this to f: it means that the places where f changes slope
in certain disjoint intervals of length 2V at most once, and within other intervals
of length V' not at all. Note that since f is a convex piecewise linear function,
it can be thought of as the maximum of a set of linear functions. Finding these

linear functions is equivalent to finding f, and lets us find the places where f
changes slope (i.e. the intersection points of the linear functions that compose
P

First, use 4 queries to find the leftmost and rightmost linear functions that
compose f. These queries are done at certain big/small enough coordinates, so
that we can be sure that they find the correct lines. Next, we will use divide
and conquer to find the rest. To find all the linear functions composing f with
slopes between [; and [o, first find the intersection of [; and Iy — call it 5. Now
we have two cases:

e If ¢ty is within an area where no intersection can exist, then we can prove
that within that area, a lines different to both Iy and Iy exists. Find it
with two queries within that area, calling it [3, and then recursively find
all the line segments between [; and I3, and between I3 and ;.

e If t; is within an area where an intersection can exist, let t; < ty be the
largest coordinate within an area without intersections, and let ¢35 > t(y be
the smallest coordinate within an area without intersections. Check if the
line segment (to, f(to)), (t1, f(t1)) is equal to the line segment lo. If not,
then similarly to the previous item, find a line /3 within the area without
intersections containing ¢;, and continue recursively. If the two points
are on ls, then we can prove that no line segments other than Il exist to
the right of ty. Thus check if (¢o, f(t0)), (t2, f(t2)) are on ;. Likewise,
if this is not the case, find a line /3 within the area without intersections
containing to, and continue recursively. Otherwise, no more line segments
exist between [; and Iy and we are done.

This can be prove to work in at most 4N + 2 queries.
Now that we have solved this subproblem, how can we use it to solve the
main problem? There are two ways of doing this:

With two line intersections. Find the intersections of the hidden lines
with two vertical lines, at 2V and at —2V. We can prove that the hidden lines
are ordered decreasingly w.r.t. their slope at —2V, and increasingly w.r.t. their
slope at 2V. Thus finding the intersections with x = 2V and x = —2V and
pairing these up accordingly gives us the lines.

With one line intersection. Find the intersections of the hidden lines with
x = xg for some xg > 2V. For a line y = ax + b, the intersection with z = x is
axg+b. Computing the remainder of this value w.r.t. xg gives us b. From there
we can deduce a. The condition xzg > 2V is because |b| < V,ie. =V <b< V.

5 Task Sum Zero

Author: Alexandru Petrescu
With thanks to Theodor-Pierre Moroianu for the description below

5.1 Solution in O(N * Q)

We process each query independently.
For a query, given L and R denoting the interval we can choose from, we can
have a dynamic programming solution, by setting dp; to be the maximal number
of subarrays we can form by only using elements Cp,,Cpyq...C;.

It can be easily verified that the recurrence is the following:

dp; = max(dp;—1,dpj—1 + 1, where C; + ...+ C; = 0).

In other words, either we ignore the i-th element, in which case we come from
dp;_1, either 7 is the last element of a subarray of sum O.

We can further note that the dp vector is strictly increasing, and so it only
makes sense to try to close the smallest subarray with sum 0 (in other words
for each 7 we only consider the biggest j with C; +--- + C; = 0.

5.2 Solution in O((N + Q) xlog(N)) time and O(N x log(N))
memory

We define a vector next, where
next; = Min(j | 3k,i <k < j,Cp+---+C; =0)

In other words, next; represents the smallest j such that the subarray C;...Cj
contains a O-sum subarray.

A greedy way to solve a query (L, R) is to iterate L,nextr,nectpest, - ..
until we either don’t have a valid element or get an element bigger that R. The
number of jumps is the maximal number of 0-sum subarrays.

We can therefore make a RMQ-like dynamic programming matrix:

Jjump; ; = 27th jump in the next vector starting from i

Using this dp we can now answer any query in logarithmic time.

5.3 Solution in O((N + Q) *log(/N)) time and O(/N) memory

The main idea of optimizing the memory usage is to observe that the next vector
described above creates a forest (multiple trees), with the father of a vertex i
being next;.

Each query can now be translated into ”What is the oldest ancestor of vertex
L smaller than R? This can be computed with linear memory in multiple ways:

e Binary search on the linearization of the tree

e Computing the heavy-path decomposition of the tree, and finding the
ancestor by jumping between paths

Note that most solutions optimising the memory usage fitted into the mem-
ory constraints.

6 Task Arboras

Authors: Tamio Vesa-Nakajima, Andrei-Costin Constantinescu, Dan-Constantin
Spatarel
With thanks to Luca Perju-Verzotti for the description below

6.1 O(N=x*Q)

Let’s first solve this problem without any updates, this can be done using the
following dynamic programming: dp[i][0] = the length of the longest chain start-
ing from node ¢ and going down in the subtree rooted in node i, and dp[i][1] =
the length of the longest chain going down from node ¢ which doesn’t intersect
with the first chain.

Let j be the child of node ¢ with the highest dp[4][0], let’s denote this child
as the main child of node 4, then:

apli)0) = dplj1[0] + d;.

dpli][1] = max(dp[k][0] + di), where pp=i and k # j.

The answer is then given by the sum of dp[é][0] + dp[é][1] over all 1.

6.2 O(N + Q xmaxHeight)

We need a way to quickly modify the values of dp after each update. One key
observation is the fact that when updating the edge ¢ — p;, the only positions
where dp can change are on the path from node 0 to node p;. Moreover, only a
bottom part of this path will change, since if the value of dp hasn’t changed in
some ancestor of node 4, then we can say for sure that it won’t change in any
of the higher ancestors.

Since updates only increase the value, all nodes where dp[node][0] changes
will in the end have their main child the one that lies on the path from node to
i.

With this, when updating an edge, we can just check each ancestor of that
edge, starting from the bottom, and update the dp accordingly.

6.3 O(N + @ *log(N) xlog(N))

We will refer to the edges between a node and it’s main child as main edges
and all other edges as weak edges.

Let’s say that after some update, the value of dp[i][0] increases by some z. If
the edge between ¢ and p; is a main one, then we can say for sure, that dp[p;][0]
will also increase by z, and so on until we reach a weak edge.

We now have these chains of main edges which update by the same value
so we can update them quickly using Heavy Path Decomposition and BIT or
SegTree, but we still haven’t solved the weak edges.

Let’s now say that after some update, the value of dp[é][0] increases by = and
the edge between i and p; is weak, we now have 3 cases:

e nothing changes and we stop,

when d; + dp[i][0] + = < dp[p;][1]

e only dp[p;][1] changes and we stop,
when d; + dp[i][0] + = < dp[p;][0],
but d; + dpli][0] + = > dp[p:][1],
then dp[p;][1] becomes d; + dpli][0] + =

e dp[p;][0] changes, and we continue by changing the chain of main edges
going up from p;,

when d; + dp[i][0] + = > dp[p;][0]
then dp[p;][1] becomes dp[p;][0]

and dp[p;][0], the whole chain of main edges going up increases by (d; +
dpli][0] + x) - dp[pi][0]

and the main child of p; becomes i (while also changing the main edge)

So we will once again start from the updated edge, and climb up the tree
increasing the values of dp, but this time, we will only check the weak edges,
since the chains of main edges can be quickly updated. Finding the weak edges
efficiently can either be done with a rope data structure, since all the chains of
main edges can be seen as ropes, or with Heavy Path Decomposition by storing
the positions of weak edges in a set for each Heavy Path.

The complexity is amortized, since after checking each weak edge, it will
merge the 2 chains of main edges together so next time it won’t have to check
it again.

	Task Floppy
	Solution storing NlogN bits (28 points)
	Solution storing only 2N bits (100 points)

	Task Brperm
	O(2K*K) per query
	O(N*log2(N) + Q)
	O(N*log(N) + Q)

	Task Peru
	O(N2)
	O(NlogN)
	O(N)

	Task Nicelines
	Task Sum Zero
	Solution in O(N * Q)
	Solution in O((N + Q) * log(N)) time and O(N * log(N)) memory
	Solution in O((N + Q) * log(N)) time and O(N) memory

	Task Arboras
	O(N*Q)
	O(N + Q*maxHeight)
	O(N + Q*log(N)*log(N))

