
XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem A. Automatic Sprayer 2

Problem idea and preparation: Suchan Park (tncks0121)

First solver: Past Glory : Pavel Kunyavsky, Artem Vasiliev, Gennady Korotkevich (0:41)

Total solved team: 47

Ei,j =

n∑
x=1

n∑
y=1

Ax,y · (|i− x|+ |y − j|)

=

n∑
x=1

{(
n∑

y=1

Ax,y

)
· |i− x|

}
+

n∑
y=1

{(
n∑

x=1

Ax,y

)
· |y − j|

}

Define Rx :=
∑n

y=1 Ax,y, Cy :=
∑n

x=1 Ax,y to simplify:

Ei,j =

n∑
x=1

(Rx · |i− x|) +

n∑
y=1

(Cy · |y − j|)

We can see that E only depends on R1..n and C1..n, so let’s determine them first.

Let’s introduce a function fk(t) = |t− k|. We know that Ei,j =
∑n

x=1 fx(i)Rx +
∑n

y=1 fy(j)Cy holds.

The slope of the graph of the function y = fk(t) changes only at t = k (−1 at t→ k− and +1 at t→ k+),

so we can kind of say f ′′k (t) =

2 if x = k

0 if x 6= k
holds.

If t and k are both integers, limu→t− f ′k(u) = fk(t) − fk(t − 1) and limu→t+ f ′k(u) = fk(t + 1) − fk(t) both

holds, so we can define f ′′k (t) := (fk(t + 1)− fk(t))− (fk(t)− fk(t− 1)).

Since f ′′k (t) is an indicator function of k over {1, 2, · · · , n}, we focus on adding and subtracting Ei,js properly

to see the indicator function inside the summation:

(Ek+1,1 − Ek,1)− (Ek,1 − Ek−1,1)

=

n∑
x=1

{(fx(k + 1)− fx(k))− (fx(k)− fx(k − 1))} ·Rx

=

n∑
x=1

f ′′x (k) ·Rx = 2 ·Rk

Thus, for each 2 ≤ x, y ≤ n− 1, it turns out

Rx = ((Ex+1,1 − Ex,1)− (Ex,1 − Ex−1,1)) /2

Cy = ((E1,y+1 − E1,y)− (E1,y − E1,y−1)) /2

holds.

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Knowing the exact values of R2..n and C2..n, we can find out these equations about R1, C1, Rn and Cn.

R1 + C1 =

(
En,n −

n−1∑
x=2

(|x− n| ·Rx)−
n−1∑
y=2

(|y − n| · Cy)

)
/(n− 1)

R1 + Cn =

(
En,1 −

n−1∑
x=2

(|x− n| ·Rx)−
n−1∑
y=2

(|y − 1| · Cy)

)
/(n− 1)

Rn + C1 =

(
E1,n −

n−1∑
x=2

(|x− 1| ·Rx)−
n−1∑
y=2

(|y − n| · Cy)

)
/(n− 1)

R1 + Rn +

n−1∑
x=2

Rx = C1 + Cn +

n−1∑
y=2

Cy

These equations are enough to uniquely determine R1, C1, Rn and Cn.

After knowing R1..n and C1..n, there are several possible ways to find any possible matrix A with predeter-

mined row sum and column sum. The simplest way is the following:

for (x in 1..n) for (y in 1..n) {

A[x][y] = min(R[x], C[y]);

R[x] -= A[x][y]; C[y] -= A[x][y];

}

The proof is that each time A[x][y] is positive, at least one of Rx or Cy becomes zero, and we can apply

mathematical induction on ”the number of non-zero Rx and Cys”. Or we can think of this procedure as

running Ford-Fulkerson on obvious flow graph.

Shortest solution: 796 bytes

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem B. Cilantro

Problem idea and preparation: Dongjae Lim (doju)

First solver: japan02 : Shigemura, Kawasaki, Yui Hosaka (1:02)

Total solved team: 7

Let’s solve an equivalent decision problem, where you determine if you can put at most x dishes in the stack

before any customers arrive. If you can put at most x dishes into the stack, then you have a strategy that

can serve 1, 2, . . . , x-th noodles to the first customer as long as the types are matched.

To solve this decision problem, a simple greedy strategy suffices. Start by putting the first x noodles in the

stack. For each customer, cook more noodles until the top of the stack matches the preference, and serve

the noodles if it matches. This greedy strategy can be implemented in O(n) time, which gives a O(n log n)

algorithm. As intended, no teams succeeded to push this into the time limit.

We can prove the correctness of the greedy strategy. Moreover, the greedy strategy can always find a solution.

Theorem 1. Given that x = 0, the greedy strategy always finds a correct serving scheme, if |S| = |T | = n

and the number of Y and N in S and T are equal.

Proof. We prove this by induction on n. The case with n = 1 is trivial. Suppose that there exists some

1 ≤ i ≤ n − 1 such that S[1, i], T [1, i] have a same occurrence count of Y and N. Then, by inductive

hypothesis, the strategy for S[1, i], T [1, i] and S[i + 1, n], T [i + 1, n] exists. Otherwise, S[1] = T [N], and

consequently S[2, n], T [1, n − 1] have a same occurrence count, which means you can put the first noodle,

apply induction hypothesis for n− 1 and serve it to the final customer.

It is important to notice that there is complete freedom over which i to match, as long as the occurrence

count is preserved.

Putting the first x noodles in a stack implies that the first x− 1 noodles can avoid being served to the first

customer. For each noodle in order, we decide the matching customer so that we serve the first customer as

late as possible. To do this, it’s not worse to pick the largest i that is matchable, and if we are only left with

the option of i = 1, then we can declare the answer. As a result, we obtain a different greedy algorithm that

determines the maximum possible x in linear time.

Shortest solution: 401 bytes

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem C. Equivalent Pipelines

Problem idea and preparation: Changki Yun (TAMREF)

First solver: Zagreb Oblutci (0:21)

Total solved team: 64

Remark that vT (i, j) is the minimum edge weight on the only path connecting i and j. We want to determine

the correspondence of N(N−1)/2 tuples (i, j, vT (i, j)). To overcome the time limit, one can think of hashing

as a hack.

Pick two random functions f, g and a random prime P . Then compute the hash value

hT =
∑
i<j

f(i)f(j)g(vT (i, j)) mod P

and group the trees by hash value. If P is sufficiently large (empirically, ∼ 1018), it is enough to avoid hash

collision.

Using union-find technique, one can easily compute hT in O(n log n) time, resulting in time complexity

O(dn log n).

There is also a deterministic solution. We think of the “merge sequence” in the union-find procedure. Sort

the edge in the non-increasing order of weight and simulate the union-find operation. If an edge with weight

w connects components A and B, vT (a, b) = w for all a ∈ A and b ∈ B. Thus, for all weights w, the trees in

the same group must share the same components “merged by weight w”.

Suppose a component a is merged into a larger component a′ by an edge weight w. Then using a tuple

(w, a, a′) for all merge events is sufficient to represent a tree. There are only O(n) important tuples, so

comparing such tuples by a trie or std::map is enough to get accepted in O(dn log n) time.

Shortest solution: 1745 bytes

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem D. Flowerbed Redecoration

Problem idea and preparation: Joonpyo Hong (spectaclehong)

First solver: japan22 : goodbaton, Tatsuhito Yamagata, Yasunori Kinoshita (2:36)

Total solved team: 4

Operations that rotate the region d× d can be expressed as permutations, and permutations can be thought

of as one-to-one correspondences.

Let F be a function that rotates the fixed top-left area, and a G be a function that brings the next target

area to the top-left: This can be easily defined as a shifting permutation. A function H = G ◦ F rotates

the area and brings the next target area to top-left. If we can do this quickly k = (M − d)/x times, we can

process the first row. Then we shift the grid downwards by y and repeat the procedure to solve the problem.

This can be solved in O(n log k) by implementing a divide-and-conquer-based fast exponentiation, or in O(n)

by decomposing the permutation into cycles and rotating each cycle k times.

Shortest solution: 1054 bytes

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem E. Goose Coins

Problem idea and preparation: Dongkyu Han (queued q)

First solver: USA1 : Kevin Sun, Scott Wu, Andrew He (0:27)

Total solved team: 44

First of all, handle the impossible case where p is not a multiple of c1.

Consider the following greedy algorithm to make p goose-dollars. Select the n-th coin as many as possible so

that the total value does not exceed p. Then select the (n− 1)-th coin as many as possible so that the total

value does not exceed p. Repeat this until the total value reaches p. We will call the resulting set of coins

the ”base solution.” Let’s say that there is ai number of i-th coins in the base solution.

Now consider another set of coins that sums to p goose-dollars. If this set of coins is different from the base

solution, we can show that there exists i(< n)-th coin that is used ci+1/ci or more times. In other words, if

every i-th coin is used less than ci+1/ci times, this set of coins is the same as the base solution.

The proof is as follows. If every i-th coin is used less than ci+1/ci times, the sum of the values of 1, 2, · · · , (n−
1)-th coins in the set is less than cn. So we have to use the n-th coin as many as possible to make p goose-

dollars, since otherwise we cannot cover the rest of the price with 1, 2, · · · , (n − 1)-th coins. By the same

logic, we have to use the (n − 1)-th coin as many as possible to make the remaining price, and the same is

true for (n− 2), · · · , 1-th coins. So it becomes equivalent to the base solution.

Using this fact, you can replace ci+1/ci coins of some i-th type with a single (i + 1)-th coin in any solution

other than the base solution. This process reduces the total number of coins, so we eventually reach the

base solution by repeating the process. In other words, we can make any solution from the base solution by

repeatedly replacing some i-th coin into ci/ci−1 coins of (i− 1)-th type. We’ll refer to this process as ”coin

splitting.”

From here, there are two ways to solve the problem.

Solution 1. (by queued q) We have to make k coins in total by splitting the coins in the base solution.

Suppose that, for every coin in the base solution, we know the minimum weights of 1, · · · , k coins that were

generated from splitting the coin. We can combine them to get the minimum weights of 1, · · · , k coins that

sum to p goose-dollars.

Formally, let Wx[1..k] be an array that contains the minimum weights of 1, · · · , k coins that sum to x goose-

dollars. Then we can calculate Wp by combining Wci ’s. Assume that the number of coins in the base solution

is m in total, and each of their values is di. Then, it holds that

Wp[j] = min
l1+···+lm=j

Wd1
[l1] + · · ·+ Wdm

[lm].

The above operation, which combines several Wx’s, can be further simplified into the process of repeatedly

combining two Wx’s. Define the binary operation ⊕ on the minimum-weights arrays A and B as follows:

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

(A⊕B)[j] := min
a+b=j

A[a] + B[b].

Intuitively, it represents a situation where we use a coins from the A array and b coins from the B array to

make j coins in total. This operation takes O(k2) time. Also, note that ⊕ is associative and commutative.

Now we can represent Wp as follows.

Wp = (Wc1 ⊕ · · · ⊕Wc1)︸ ︷︷ ︸
a1 times

⊕ · · · ⊕ (Wcn ⊕ · · · ⊕Wcn)︸ ︷︷ ︸
an times

= (Wc1)a1 ⊕ · · · ⊕ (Wcn)an .

If we know every Wci , we can calculate (Wci)
ai quickly by applying exponentiation by squaring. The number

of operation is
∑

i lg ai ≤
∑

i[lg(ci+1/ci)+1] =
∑

i(lg ci+1− lg ci)+n ≤ lg p+n = O(lg p), so we can calculate

Wp in O(k2 lg p) time.

Now we have to figure out how to calculate Wci . To make ci goose-dollars, we can use one i-th coin or split

it. If we split it once, we get ci/ci−1 coins of (i− 1)-th type. Since we can split them further, it holds that

Wci [j] =

wi if j = 1

(Wci−1
)ci/ci−1 [j] if j > 1

.

It takes O(k2 lg p) time to get all Wci ’s by a similar logic. Hence the total time complexity to calculate Wp

is O(k2 lg p). The minimum total weight of k coins is Wp[k]. If it is infinity, there is no solution. We can also

calculate the maximum by flipping the signs of the weights and applying the same algorithm.

Solution 2. (by tncks0121) Consider the process of splitting coins from n-th to first. Define the DP table

as follows.

D[i, j, l] := (The minimum weight of a set of coins that sum to p, where some of (i + 1), · · · , n-th

coins were split, there are j coins in total, and there are l coins of i-th type.)

If we think about the process of splitting m coins of i-th type in the set of coins that D[i, j, l] represents,

we can obtain the following relation. Here bi = ci/ci−1 represents the number of (i − 1)-th coins that gets

created when we split an i-th coin.

D[i− 1, j + (bi − 1)m, ai−1 + bim] = min
m≤l≤k

{D[i, j, l]}+ (biwi−1 − wi)m.

We only have to consider the cases where the total number of coins does not exceed k. So we ignore the cases

where j+(bi−1)m or ai−1 +bim exceed k. We can calculate the suffix minimums to get minm≤l≤k{D[i, j, l]}
in O(1), so each D[i, j, l] can be filled in O(1). The total time complexity is O(nk2), which is same as the

number of the DP states. The minimum total weight of k coins is minl D[1, k, l]. If it is infinity, there is no

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

solution. We can also calculate the maximum by flipping the signs of the weights and applying the same

algorithm.

Shortest solution: 1776 bytes

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem F. Hedgehog Graph

Problem idea and preparation: Yeonghyun Kim (kipa00)

First solver: japan17 yosupo (4:41)

Total solved team: 1

1. Solution with 2
√
V + log V queries. We will only make queries that starts at vertex s = query(1, 106),

since s lies in the cycle. For all 1 ≤ i ≤ 1 000, ask query(s, i) and query(s, 1000i + 1). Among the 2000

queries, there exists a vertex that was returned twice. Let x, y be such query with query(s, x) = query(s, y).

The answer is a smallest divisor d of |y − x| with query(s, d) = s.

If query(s, d) = s, then for all integer k > 1, query(s, kd) = s. As a result, you don’t have to try all divisors.

Take a prime factorization of |y−x|, and try dividing to each factor in the multiset, taking the divided result

if it is still a multiple of the period.

Abstracting the first solution. Taking all the assumption at the first solution, we can reformulate the

problem. We need to find a short sequence x1, x2, . . . , xn, such that for any number 1 ≤ k ≤ 106, there exists

a pair xi, xj where |xi−xj | is a non-zero multiple of k. For example, the solution 1 generates the length-2 000

sequence

xi =

i if i ≤ 1 000

1000(i− 1000) + 1 if i > 1 000
.

And for every number 1 ≤ k ≤ 106, |xdk/1000e+1000 − x(−k) mod 1000+1| is a nonzero multiple of k. The total

query spent by this approach is 1 + n + log max(xi).

Given that the sequence xi is generated, the only algorithmically hard part is factorization. Here, you can

use standard algorithms like Pollard-Rho, or even try a trivial algorithm that tries all factors ≤ 106 since

any larger prime factors don’t contribute to the answer.

2. Solution with
√
V + 2 log V queries.

One idea is to observe that we only need to consider the number 500 001 ≤ k ≤ 106. Since all numbers

1 ≤ k ≤ 500 000 have a multiple in the range [500 001, 106], finding their multiples are enough.

The first construction generated two sequence A = [1, 2, . . . , 1000], B = [1001, 2001, . . . , 106 + 1] where

|Ai − Bj | covers all multiple of k, and simply concatenated it. We will also use such strategy, but we will

cover two elements at once.

Let U = 500 000 and L = 1 000. we will construct a sequence A,B such that |Ai −Bj | is in a form of M =
(U + 1)(U + L) (U + 2)(U + L− 1) . . . (U + L/2)(U + L/2 + 1)

(U + L + 1)(U + 2L) (U + L + 2)(U + 2L− 1) . . . (U + 3L/2)(U + 3L/2 + 1)
...

...
. . .

...

(U + L2/2− L + 1)(U + L2/2) (U + L2/2− L + 2)(U + L2/2− 1) . . . (U + L2/2− L/2)(U + L2/2− L/2 + 1)



XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

In this 500× 500 matrix, Mi,j+1−Mi,j = L− 2j, Mi+1,j −Mi,j = 2LU + 2iL2. Thus, we can find a sequence

a, b such that ai − bj = Mi,j Using this fact, you can find a length-1 000 sequence where max(x) = O(V 2).

3. Solution with
√

2/3V + 3 log V queries.

We can slightly improve the previous idea. The matrix above illustrates a way to construct a sequence ai, bj

such that ai−bj covers two elements of the arithmetic progression. Thus we can find a sequence a, b of length

d
√

166 667e = 409 to cover an arithmetic progression of 333 335, 333 337 . . . 999 999.

This covers all odd numbers, since all numbers 1 ≤ 2k+1 ≤ 333 333 have a odd multiple over that arithmetic

sequence. Every even number at most 106 can be represented as n = 2k × (2a + 1) where 2a + 1 ≤ 106, 1 ≤
k ≤ 19. By multiplying all matrix entities by 219, we can cover all numbers with max(x) = O(V 3).

Challenge. Given that we have no restriction on max(x), can we devise a generalized construction that

minimizes the queries, asymptotically or exact?

Shortest solution: 1145 bytes

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem G. Lamb’s Respite

Problem Idea: Jaehyun Koo (koosaga)

Preparation: Jaeung Lee (L0TUS)

First solver: USA1 : Kevin Sun, Scott Wu, Andrew He (1:04)

Total solved team: 18

Without the ultimate ability, let’s consider the condition where the player may die. Let p be the action where

the player achieved maximum HP afterward, and q be an action where the player died afterward. For the

player to die, ap+1 + ap+2 + . . . + aq ≤ −H should hold. In other words, if the player dies, there exists a

subarray where its sum is at most −H.

Conversely, suppose that the minimum sum subarray of ai is al+1, . . . , ar, and its sum is at most −H. Since

the subarray has the minimum sum, there exists no position where al+1 + . . . + aj > 0 for l + 1 ≤ j ≤ r.

Thus, there exists no cases where the champion overheals. The champion will get at least H damages without

exception, and will die regardless of its starting health.

What happens when the Lamb’s Respite ability is on, is very similar to the usual cases. If the player reached

the HP dH10e, then the player stays in that health until its deactivation. So it can be considered as death,

although it doesn’t kill the champion.

We can easily maintain the minimum prefix, suffix, subsegment sum in a segment tree. As a result, the above

observation gives an algorithm to determine whether the champion dies or not in the interval [1, i− 1]. This

extend to interval [i, j] and [j + 1, n] as well. However, we don’t start with full HP in those cases. We need

to know the resulting HP after processing each interval.

Using the same argument as above, you can show that the resulting health from interval [1, i− 1] equals to

H ′ = H+ (minimum suffix sum of the interval [1, i− 1]). The initial HP can be supplied to the interval [i, j]

as well by appending a single integer H ′−H at the front. (The usual way of implementing the segment tree

will make this part of implementation very straightforward).

The case [j + 1, n] is solved similarly. Thus we can determine the resulting HP. The time complexity of this

solution is O((n + q) log n).

Shortest solution: 1726 bytes

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem H. Or Machine

Problem idea and preparation: Jaemin Choi (jh05013)

First solver: Past Glory : Pavel Kunyavsky, Artem Vasiliev, Gennady Korotkevich (0:10)

Total solved team: 70

When dealing with bitwise operations, it’s often useful to treat a b-bit integer as a tuple of b independent

1-bit integers (0 or 1). Using this approach, we will assume each register value is 1-bit, and solve the problem

8 times to get the final answer.

Notice that once a register value becomes 1, it stays at 1 forever. For each register i, let Ti be the number

of operations required to make the register i’s value equal to 1 (or Ti = 0 if it’s already 1 before starting

any operation). Then the value after t operations is 1 if Ti ≤ t, and otherwise 0. Now the problem reduces

to computing Ti for each i.

This can be modeled as a graph problem. Treat each register as a vertex, and each operation as an edge.

The i-th operation represented by a and b is modeled as an edge from b to a with “index” i. If b becomes

1 at time Tb, then it propagates its value to a at time T ′, where T ′ is the smallest number > Tb such that

Ta ≡ i− 1 (mod l).

Now this looks like a shortest path problem in which Dijkstra’s algorithm can be used. However, the distance

metric is unusual: instead of adding the weight of an edge, we are computing some value T ′ that depends on

the edge and the distance to the previous vertex, Tb. Nevertheless, Dijkstra’s algorithm still works correctly.

To see why, note that the proof of correctness of Dijkstra’s algorithm depends only on the fact that the

distance does not decrease by taking an alternative path; the exact distance formula does not matter as long

as T ′ ≤ Tb.

The total time complexity is O(bl log n), where b is the number of bits (which is 8).

As a final note, this approach can be further generalized: define a distance metric T (t, e), which means that

if we take an edge e at time t, we arrive at the other vertex at time T (t, e). If T (t, e) ≥ t is guaranteed,

Dijkstra’s algorithm can be applied. In the original Dijkstra’s algorithm, we set T (t, e) := t+ ew where ew is

the weight of e. For another example, T (t, e) := max(t, ew) gives a minimum bottleneck path: a path whose

maximum edge weight is minimized.

Shortest solution: 925 bytes

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem I. Organizing Colored Sheets

Problem idea and preparation: Hyunuk Nam (jwvg0425)

First solver: japan02 : Shigemura, Kawasaki, Yui Hosaka (4:32)

Total solved team: 2

Let’s call the tuple (W,H, i, j) inadmissible if the colored sheet of size W×H can not cover the uncolored cell

(i, j). For convenience, denote the tuple (W,H) inadmissible if there exists a cell (i, j) where (W,H, i, j) is

inadmissible. You can first observe that if (W,H) is inadmissible, (W,H + 1) and (W + 1, H) is inadmissible.

We introduce an important fact for inadmissible tuples.

Theorem 2. If (W,H) is inadmissible, there exists some cell (i, j) such that (W,H, i, j) is inadmissible and

(i, j) is either adjacent to a colored cell or outside of the grid.

Proof. Suppose not. For a size (W,H), denote the cell (i, j) bad if (W,H, i, j) is inadmissible. Consider

some 4-component of bad cells C. As the theorem is false, all cells adjacent to C are good cells. Take one

such cell (p1, q1) and consider a W × H rectangle R that covers (p1, q1). By definition, there exists a cell

(p1 + dx, q1 + dy) ∈ C where (dx, dy) ∈ {(0, 1), (1, 0), (0,−1), (−1, 0)}.

Now let R′ be a rectangle where R is pushed toward (dx, dy). Then, R′−R is either a length W row or length

H column. Suppose that there is a colored cell (p2, q2) ∈ R′−R. (p1+dx, q1+dy) is in C∩(R′−R). Since any

cell in C can’t be adjacent to a colored cell, there exists some uncolored good cell between (p1 + dx, q1 + dy)

and (p2, q2). If you take the rectangle covering that good cell, it consequently covers (p1 + dx, q1 + dy) due

to the existance of colored cells in the right. We reach a contradiction.

The theorem enables us to view the problem in another direction. Instead of enumerating all (W,H) to find

bad (i, j), you can enumerate all colored cells and directions to find inadmissible (W,H) adjacent to such

cells. Let’s fix the direction to (−1, 0) and solve the problem since the other case can be dealt with rotations.

One naive solution is to fix the cell (i, j) where (i + 1, j) is either colored or outside the grid, and find

all admissible sizes instead. Maintain the value Hi,j =(the number of consecutive uncolored cells in upper

direction), and enumerate all admissible sizes by starting from Hi,j ×1, gradually reducing the heights while

increasing the widths with two pointers. You can enumerate all admissible sizes in O(n + m) time, which in

turn gives all inadmissible sizes.

This can be optimized in linear time, with this simpler but equivalent algorithm. For each row i, take all

maximal rectangles anchored in row i. Using the array Hi,j , it is a standard problem to compute all maximum

rectangles in O(max(n,m)) time with stacks. If there exists a maximal rectangle of size w× h, then the size

w×(h+1) is inadmissible (along with anything larger than that). Regardless of the status of row i+1, if you

repeat this for all rows, you can find all inadmissible sizes except the size w× 1 case (which can be manually

handled). To prove it, note that any inadmissible size you rejected in the naive solution corresponds to some

maximal rectangle in the final algorithm.

Shortest solution: 1868 bytes

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem J. Periodic Ruler

Problem idea and preparation: Dongkyu Han (queued q)

First solver: ext71 (0:08)

Total solved team: 68

Let’s store the numbers that cannot be a period of the ruler in a hash set S.

When the period is t, a pair of marks with a distance multiple of t must be of the same color. In other words,

the distances of differently colored pairs cannot be multiple of t. For every such pair, we will put the divisors

of the distances into S.

To do so, we have to find the divisors quickly. The maximum distance is 2 × 109, so trial division would

not work. Instead, we can try dividing the distance, namely l, by positive integers less than or equal to√
l. If an integer d divides l, count both d and l/d as divisors. This method counts all divisors of l and the

time complexity is O(
√
l). Since we have to repeat this process for every pair with different colors, it takes

O(n2
√

max l) in total.

Now consider a positive integer t that has not been added to S. It is possible to color the ruler such that

ci = ci+t for every i. However, there is one more condition for t to be a period: t must be the minimum

positive integer that satisfies ci = ci+t for every i.

To check if t 6∈ S can be a period, i.e. no smaller period exists, we have to do the following. First calculate

the colors of the marks at 0, 1, · · · , t− 1 using the property ci = c(i mod t). If there exist marks among them

that we don’t know their colors, we can color them arbitrarily so that the ruler doesn’t have a smaller period.

On the other hand, if we know all the colors, see if some divisor d of t can be a period by checking ci = ci+d

for every 0 ≤ i < t − d. t cannot be a period if such a divisor exists, and otherwise t can be a period. The

time complexity is O(t2). (We can make it faster with O(t
√
t)-time if we use the same algorithm to get the

divisors in O(
√
t) time, but it is not necessary to solve the problem.)

If t 6∈ S is larger than n, t can always be a period. It is because there must exist a mark with unknown color

among the marks at 0, 1, · · · , t − 1, since we only know the colors of n < t marks. Therefore, we have to

search for a smaller period only for 1 ≤ t ≤ n. The time complexity is O(n3).

So the total time complexity to get the elements in the set S is O(n2
√

max l + n3). Print the size and the

sum of S and it will get accepted.

Shortest solution: 1171 bytes

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem K. Three Competitions

Problem Idea: Jaehyun Koo (koosaga)

First solver: BMSTU : (0:16)

Total solved team: 34

Build a graph of n people such that there is a vertex from i to j iff person i directly wins against j. Then

this graph is a tournament graph: a directed graph which is obtained by orienting each edge of a complete

graph in arbitrary direction. The given queries are reachability queries, asking whether there is a path from

one vertex to another.

In a tournament graph, we can answer reachability queries in O(1) with O(n2) preprocessing time. Find all

the strongly connected components and order them in topological order. For given two vertices i and j, let

Ci and Cj be the SCC that contains i and j respectively. Then it’s easy to prove that there is a path from i

to j iff Ci = Cj or Ci appears earlier than Cj in the topological order.

But of course, we have to find the SCCs more quickly to solve this problem. We can do this by optimizing

Kosaraju’s algorithm. This algorithm computes the SCC by doing a DFS twice in a specific order. Thus, if

we can quickly find a new, unvisited vertex u adjacent to a given vertex v (or report that no such u exists),

then we can skip unnecessary edges and compute the SCC more quickly.

Let’s focus on finding a new vertex u that has a higher rank than v in both the first and the second

competition. The other two kinds of vertices can be found in the same way. We maintain a maximum

segment tree, where the key is the first competition rank, and the value is a pair of (second competition

rank, vertex id). Initially, all vertices are registered into the segment tree. Whenever v is visited, unregister

it by putting the value (0, 0). To find a new vertex, use a maximum query on [a, n], where a is the rank of v

in the first competition.

During the second DFS, since the graph is inverted, we have to find a new vertex that has a lower rank in

at least two competitions. This can be done in the same way as above.

The time complexity is O(n log n + q), by initializing the segment trees in O(n), finding a new vertex O(n)

times in O(log n) each, and answering each query in O(1).

Shortest solution: 2094 bytes

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem L. Utilitarianism 2

Problem idea and preparation: Jaehyun Koo (koosaga)

First solver: japan02 : Shigemura, Kawasaki, Yui Hosaka (2:28)

Total solved team: 2

1. Polynomial time algorithm. For a fixed set of agents, the maximum utility f(S) corresponds to

a maximum-weight matching in a bipartite graph over the edge set S. This can be determined by using

minimum-cost maximum-flow (MCMF). Construct a graph with n+m+2 vertices, where the source connects

all vaccine manufacturers, all hospitals connects to sink, and agents connects respective facilities. All edges

have unit weight, and the agent edges have weight −c. The negation of MCMF in this flow graph corresponds

to the optimal solution. (Keep in mind, that you don’t have to find maximum flow, but just have to find

minimum cost flow.)

As a result, the answer can be computed by k + 1 execution of MCMF algorithm. Any standard algorithm

will yield a polynomial-time solution, and any standard algorithm will time out in the given input bounds.

2. min(n,m) + 1 execution of MCMF. Consider a set of edges in any maximum weight matching. If the

current agent does not belong to that matching, f(U \{e}) = f(U) trivially holds. This reduces the execution

count of MCMF algorithm, but is still insufficient to solve the problem.

3. One execution, O(min(n,m)) shortest path computation. Consider a symmetric difference D =

f(U)∆f(U \ {e}). As f(U) and f(U \ {e}) forms a matching (maximum degree 1), D is a collection of paths

and cycles.

If there is a cycle or a path in the symmetric difference that does not contain the edge e, then the sum of

weights in their respective sets should be equal, otherwise both matching can’t be optimal. As a result, we

can assume that the symmetric difference is either a path or cycle that contains e.

Let’s say we found the optimal solution f(U) with the initial MCMF. Then the path and cycle consisting the

symmetric difference corresponds to the directed path in the residual graph. The cycle case can be solved

straightforwardly, since you can just find the shortest path from u to v if e = (u, v). The path case requires

some modification from the initial flow graph. In the end, the path containing e is also a part of big cycle that

contains the source and sink. If you add a weight 0 edges from source to sink which remains unaugmented,

then a shortest path from u to v represents cycle and path cases at once.

As a result, the problem can be solved with single execution of MCMF and O(min(n,m)) execution of

shortest path algorithm. This is the intended solution, but there is an important technical detail which we

have to mention.

4. Choosing the right shortest path algorithm. The shortest path algorithm in MCMF requires the

handling of negative weight edges. Using Bellman-ford or SPFA requires O((n+m)k) time. In most contest

environment, they perform very well, to the extent that some consider them as a linear-time algorithm. But

the tests are specifically designed to time out these algorithms, at least to our best effort.

In fact, there is a technique that requires at most one iteration of Bellman-Ford, usually called as potential

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

method or Johnson’s algorithm. This is a well-known technique which we won’t discuss in detail. With this

technique, we can transform each edge costs as a nonnegative number and apply Dijkstra’s algorithm to find

the shortest path. This yields a total O(min(n,m)(n + m + k) log k) algorithm, which passes in time.

Shortest solution: 3429 bytes

XXII Open Cup. Grand Prix of Korea
Sponsors: Naver D2, Startlink,

Devsisters, Samsung Software Membership

Problem M. Yet Another Range Query Problem

Problem idea and preparation: Jongyoung Lee (Gom)

First solver: japan17 yosupo (1:32)

Total solved team: 4

Let’s first consider the solution for the case l = r.

Let li be the largest j with j < i,Aj > Ai (0 if it doesn’t exist) and ri be the smallest j with j > i,Aj > Ai

(n + 1 if it doesn’t exist). Then, Max(As, As+1, . . . , Ae) = Ai if and only if li < s ≤ i ≤ e < ri. As a result,

we can decompose the 2-dimension grid into a n piece of rectangle grouped by same range maximum value.

This also holds for a minimum value.

Maintain Bi,∗ in a segment tree and sweep in increasing order of row number i. The insertion and the

deletion correspond to a range multiplication (query type 1), and each query corresponds to a range sum

(query type 2). You can use a segment tree with lazy propagation. The case i > j can be handled by

multiplying Bi,i := Bi,i × 0 after processing the row i.

In the general case, denote the answer of the query (l, r, s, e) as Q(l, r, s, e). Observe that Q(l, r, s, e) =

Q(1, r, s, e)−Q(1, l − 1, s, e), which means that we can assume l = 1.

Let’s extend the above lazy segment tree to support another operation. Let S∗ be an array initialized with

zero. If the type 2 (sum) query is given, we compute
∑r

i=l Si instead. If the type 3 (historic addition) query

is given, we apply Si = Si + Bi for all 1 ≤ i ≤ N . If this query is possible, We can simultaneously maintain

a sum Si,j =
∑j

k=1 Bk,j in the sweeping phase.

You can modify the lazy segment tree for these queries. For each node, store the value Si, and the count Ci.

These values denote how much time query 3 was invoked in the range but not propagated to the subtree. After

processing each row, increment the value Sroot, Croot by the sum of B and 1, respectively. If we encounter

the node with a non-zero value Ci, we can compute how much sum should be added to their children, since

their value remains untouched while the Ci was accumulated. This article might help you in understanding

historic value maintenance.

In total, the problem can be solved in O((n + q) log n).

Shortest solution: 2987 bytes

https://codeforces.com/blog/entry/57319

	Problem A. Automatic Sprayer 2
	Problem B. Cilantro
	Problem C. Equivalent Pipelines
	Problem D. Flowerbed Redecoration
	Problem E. Goose Coins
	Problem F. Hedgehog Graph
	Problem G. Lamb's Respite
	Problem H. Or Machine
	Problem I. Organizing Colored Sheets
	Problem J. Periodic Ruler
	Problem K. Three Competitions
	Problem L. Utilitarianism 2
	Problem M. Yet Another Range Query Problem

