
International Zhautykov Olympiad
Kazakhstan, 16-17 February, 2022

Problem A. Where is the legend?

• n ≤ 15, S ≤ 400. 14 points.

Any recursive solution.

• ai = i. 13 points.

Observe that after each remove difference between adjacent elements equals the power of two and
any such sequences starting with 1 and ending with n is possible. We can greedily construct such
sequences or just take the number of bits in n.

• ai ≤ 3. 9 points.

Approach remove if we can works.

• n ≤ 300, S ≤ 1000, 17 points.

Let’s calculate dpl,r: if there is a way to remove all elements from l+ 1 to r − 1. dpi,i+1 = true and
dpl,r = true if there exist m (l < m < r) such that dpl,m, dpm,r and am = al+ar

2 .

And calculate di — minimal length of a prefix after performing operations.

The answer to the problem will be dn.

• n ≤ 3000, S ≤ 10000, 18 points.

Observe that if al < ar and dpl,r = true than al < al+1 < .. < ar−1 < ar. Hence there are only one
m such that am = al+ar

2 . Find it using two pointers or binary search. al > ar similar.

• No additional constraints. 29 points.

Another observation it’s for fixed l there are only log210
9 possible r’s cause value ar − al doubled

after each r .

Problem B. Zhylan.io

• n, q ≤ 500, 7 points.

Optimal to eat the smallest snake first.

For each query, for each snake in query check can it eat all others. Sort other snakes and eat them
one by one from the smallest.

• n, q ≤ 3000, 15 points.

If a snake with length x can eat all others then snakes with length ≥ x also can.

For each query, sort snakes and binary search the smallest snake that can win.

• a1 ≤ a2 ≤ . . . ≤ an 24 points.

i-th snake can eat snake j if:

– for j < i: ai + a1 + a2 + . . .+ aj−1 ≥ aj + k hence ai − k ≥ aj − prefj−1

– for j > i: a1 + a2 + . . .+ aj−1 ≥ aj + k hence −k ≥ aj − prefj−1

where prefi is sum of first i snakes

Value of aj−prefj−1 on segment will be simply aj−prefj−1+prefl−1. Store in some data stucture
like segment tree minimal aj − prefj−1 on segment.

For each query, binary search the smallest snake and check it with values from the data structure.

Page 1 of 4



International Zhautykov Olympiad
Kazakhstan, 16-17 February, 2022

• n, q ≤ 5 · 104, ai ≤ 106, 20 points.

Assume we have a sorted array. Let’s find minimal aj − prefj−1.

aj − prefj−1 ≥ aj+1 − prefj hence 2 ∗ aj ≥ aj+1. There are at most log2109 such positions.

Answer queries with mo’s algorithm. Store sorted values of interval in some data structure and keep
elements more than previous two times. For each query, binary search answer and obtain the above
positions from data structure.

• n, q ≤ 105, 19 points.

Use data structures that can fast obtain such positions on segment. (e.g. Persistent segment tree,
Wavelet tree)

• No additional constraints. 15 points.

Some optimizations if you need.

Problem C. Mansur vs Tima

• S ≤ 10, k ≤ 4, 6 points.

Any bruteforce solution.

• S ≤ 50000, k = 1, 10 points.

minimal xor ovel all pairs in array = minimal xor over all adjacent pairs in sorted array

• S ≤ 1000, k ≤ 2, 10 points.

Binary search answer. Build graph with edges between i and j if ai xor ai ≥ x. Color graph with
two color.

• S ≤ 50000, k ≤ 2, 20 points.

Find Minimal Spaning Tree of graph with edges between i and j with weight ai xor ai. And color
it with two color

Proof of correct left for readers

MST can be obtained by Boruvka’s algorithm.

• S ≤ 50000, k ≤ 4, 22 points.

If for the fixed prefix(e.g. 1011???) number of matchings ≤ 2 ∗ k elements. Binary search answer.
Build graph with edges between i and j if ai xor ai ≥ x. Color graph with k color. Since k is very
small any fast coloring algorithm enough(e.g. O(32∗k ∗ k).
If for the fixed prefix(e.g. 1011???) number of matchings > 2 ∗ k elements answer will be less than
2s where s is the count of undefined bits. Hence we can divide them into two groups and solve them
separately(e.g. 10111?? and 10110??).

• No additional constraints. 32 points.

For the fixed prefix(e.g. 1011???) group matchings by next bit(e.g. 10111?? and 10110??).

If the size of both groups at most k. Build bipartite graph with the edges from elements of the first
group to the second group with weight xor of their values. Binary search answer. Optimal coloring
can be obtained from maximal bipartite edge matching.

Otherwise, solve for groups separately.

O(nk2log210
9)

Problem D. Streets in Kaskelen

Page 2 of 4



International Zhautykov Olympiad
Kazakhstan, 16-17 February, 2022

• S ≤ 10, T ≤ 104, no queries of second and third type. 12 points. Build graph and check
reachibility(e.g. DFS, BFS)

Any bruteforce solution.

• S ≤ 80, T ≤ 2 · 105, no queries of second and third type, 15 points.

Build graph and build reachability matrix(e.g. DFS, BFS) to answer the queries in O(1).

• a1 = a2 = . . . = an, no queries of second type, 14 points.

Assume all horizontal lines go right and a vertical line at v go up. All nodes up and right reachable
from v. Find first down edge on right side of v. All nodes down v and right this line is also reachable.
All other nodes are not reachable. All other cases are similar.

• S, T ≤ 1000, no queries of second and third type, 16 points.

TODO

• S, T ≤ 50000, no queries of second and third type, 22 points.

Subtask for any other but not optimal ways to calc answer.

• No additional constraints. 21 points.

The only case when we use the same direction more than once is if it passes through the coordinates
of the node in the query. Hence we can divide our grid into 9(3x3) parts and for each direction check
if there are edges in this part.

To make it easy to code take any 0-line and any 1-line in every three parts for x and for y. Build a
graph with (3 + 3 + 2)2 = 64 (3 0-line and 3 1-line plus v, u line) nodes and check reachability.

Problem E. Challenges of urban planning

• S ≤ 500, 7 points.

Fix a, b and calc distances.

• (ui, vi) = (i, i+ 1) for all 1 ≤ i ≤ n− 1, p = 3, 6 points.

For fixed a b will be on big part and 2
3 distance to the end.

• S ≤ 4000, 15 points.

Consider path from a to b. There is edge such that all nodes from on side add to sum dist(a, v) and
another side nodes add dist(b, v). Brute edge and calc sum of dist(a, v) and take minimal sum of
dist(b, v).

• p = 2, 20 points.

Distance from cut edge to a equal to the distance to b +{−1, 0, 1}. For b cut edges is uniquely
defined. Just calc answer.

• p = 1, 22 points.

For cut edge optimal a and b is centroids of components. Subtree centroid can be obtained by lifting
the biggest subtree centroid. Uppertree centroid can be obtained by Small to Large technique with
delete, add node and maintain centroid. But it is too hard to code. So let’s reroot the tree on
centroid and now uppertree centroid can be only in the biggest or in the second biggest subtree of
root. Instead of lifting centroid in every node, precalc centroid by size of removed subtree. O(n)

• S ≤ 30000 21 points.

For fixed cut edge and b, answer for a depends only on distance from cut edge to a. There are lot
of ways to do it.(centroid + cht, lichao) O(nlog2n)

Page 3 of 4



International Zhautykov Olympiad
Kazakhstan, 16-17 February, 2022

• No additional constraints, 21 points

Distance from cut edge to a equal to the distance to b +{−1, 0, 1}. So it became a standard centroid
decomposition problem. O(nlogn)

Problem F. Green Line

• n ≤ 100, ai ≤ 100 for all 1 ≤ i ≤ n, 6 points.

Just simulate the process.

• n ≤ 100, 21 points.

Store event "when sign between ai and ai+1 changes". There are O(n2) such events and every next
event can be obtained in O(n)

O(n3)

• n ≤ 2000, 20 points.

Actually if you store events in heap and write transitions like in Dijkstra it will be O(n2logn)

• No additional constraints. 53 points.

Magic part: build another array b. Initially b = a. In next step bi grows like a but only if bi−1 > bi.
And similarly build c by ci+1 > ci. At every step for every i true ai = max(bi, ci). poof..

Page 4 of 4


