Problem A. Atcoder Problem

Input file:
standard input
Output file: standard output
Time limit:
4 seconds
Memory limit:

Print the number, modulo 998244353 , of integer sequences $A=\left(A_{1}, A_{2}, \ldots, A_{N}\right)$ with length N that satisfy both of the following conditions.

- $0 \leq A_{1} \leq A_{2} \leq \cdots \leq A_{N} \leq M$
- $A_{1} \oplus A_{2} \oplus \cdots \oplus A_{N}=X$

The problem is too easy, so output the answer for each $N=1,2, \ldots$, NMAX .

Input

In the first line, $N M A X, M, X\left(1 \leq N M A X \leq 10^{5}, 0 \leq M, X<2^{60}\right)$.

Output

$N M A X$ lines - the answers for $N=1,2, \ldots, N M A X$.

Examples

standard input	
	standard output
	0
	3
	7
	25
	1000
	49
	1
	101
	1418
	38280
	756912
	13403840
	203823022
	755806367
	368916768
	79402702

Problem B. Best Problem

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 1024 megabytes
You are given a binary string S. You can perform the following operation any number of times:

- Replace one substring '0101' with '1010'.

What is the maximum number of operations you can perform?

Input

A binary string $S\left(1 \leq|S| \leq 5 \times 10^{6}\right)$.

Output

One integer - the answer.

Examples

standard input	standard output
10100010011001011111	5
$0000010101100110101101010110000110100 \backslash$	58
$111000010010111111001011011101010001 \backslash$	
11101111010101010010101010	
(There won't be extra line breakers \	
in the actual test cases.)	

Problem C. Cryptography Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
1024 megabytes

You are given m equations of the form

$$
a_{i} \cdot x+e r r_{i} \equiv c_{i} \quad(\bmod p) .
$$

Here, err_{i} is an unknown random error term, chosen uniformly at random from $-\left\lfloor\frac{p}{200}\right\rfloor, \ldots,\left\lfloor\frac{p}{200}\right\rfloor$, while a_{i}, c_{i} and p are known to you.
You know that these equations hold for some unknown integer x. Find one such x.

Input

In the first line, $T(1 \leq T \leq 500)$ - the number of test cases. For each test case:

- In the first line, $m, p\left(50 \leq m \leq 100,10^{15} \leq p \leq 10^{18}\right)$.
- In the next m lines, $a_{i}, c_{i}\left(0 \leq a_{i}, c_{i} \leq p-1\right)$.
- It's guaranteed that p is a prime, a_{i}, x are chosen uniformly at random from 0 to $p-1$, and c_{i} is computed by $\left(a_{i} \cdot x+e r r_{i}\right) \bmod p, e r r_{i}$ is an integer chosen uniformly at random from $-\left\lfloor\frac{p}{200}\right\rfloor, \ldots,\left\lfloor\frac{p}{200}\right\rfloor$.

Output

For each test case, one integer - the answer. If there are multiple solutions, you may output any.

Example

standard input	standard output
1	578607642570710976
50922033901407246477	
4923008779071486978585039545574817	
36478175140515505237143454432095134	
537753813197233578694568987600933631	
\ldots	
(truncated)	

Note

The full sample test case is available in the contest system.

Problem D. Digit Sum Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
1024 megabytes

For a nonnegative integer x, let $f(x)$ and $g(x)$ denote the digit sum of x in binary and ternary, respectively.
Given n, a, b, c, compute

$$
\left(\sum_{i=1}^{n} a^{i} b^{f(i)} c^{g(i)}\right) \bmod 998244353
$$

Input

In the first line, $n, a, b, c\left(1 \leq n \leq 10^{13}, 1 \leq a, b, c<998244353\right)$.

Output

One integer - the answer.

Examples

standard input	standard output
123456123452345673456789	664963464
987654321098712816837595128478	7972694

Problem E. Elliptic Curve Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
1024 megabytes

This problem might be well-known in some countries, but how do other countries learn about such problems if nobody poses them?

Let p be an odd prime. Compute the number of quadratic residues in $[l, r]$.
x is a quadratic residue of p iff $x^{(p-1) / 2} \equiv 1(\bmod p)$.

Input

In the first line, $p, l, r\left(3 \leq p \leq 10^{11}, 1 \leq l \leq r<p\right)$. It's guaranteed that p is an odd prime.

Output

One integer - the answer.

Examples

standard input	standard output
1138	3
$99824435311451400 \quad 919810000$	454174074
$96311898227 \quad 25437319919$	55129361817

Problem F. Full Clue Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 megabytes

Slitherlink is a puzzle game played on a $n \times n$ grid. Some cells of the grid contain numbers (called clues). The solver must draw lines along the edges of some cells to form a loop, such that:

- The loop does not branch off or cross itself.
- The number written in a cell is equal to the number of edges surrounding the cell that are visited by the loop.

Construct a $n \times n$ slitherlink problem with full clues but multiple solutions. Moreover, there must be a pair of different solutions that satisfy all clues but share at most four edges.
Note: "full clues" means every cell in the problem should be filled with a clue number from $0, \ldots, 4$. "Two solutions share x edges" means that exactly x edges appear in both solutions.

Input

In the first line, $n(2 \leq n \leq 20)$. It is guaranteed that an answer always exists.

Output

First, output an $n \times n$ matrix - the problem.
Then, output two solutions - two $n \times n$ matrices. For each cell, if it is inside the loop, output " 1 ", otherwise output " 0 ".

Example

| standard input | | | | | | standard output |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | | 2 | 2 | 1 | 2 | |
| | 2 | 2 | 3 | 1 | 1 | |
| 2 | 2 | 2 | 1 | 1 | | |
| 3 | 2 | 3 | 3 | 2 | | |
| 1 | 0 | 1 | 1 | 3 | | |
| | | | | | | |
| 1 | 1 | 1 | 1 | 1 | | |
| 1 | 0 | 0 | 1 | 1 | | |
| 1 | 0 | 1 | 1 | 1 | | |
| 1 | 0 | 1 | 0 | 1 | | |
| 0 | 0 | 0 | 0 | 1 | | |
| | | | | | | |
| 1 | 1 | 1 | 1 | 1 | | |
| 0 | 0 | 0 | 0 | 0 | | |
| 0 | 0 | 0 | 0 | 0 | | |
| 0 | 0 | 0 | 0 | 0 | | |
| 0 | 0 | 0 | 0 | 0 | | |

Note

The example just shows how to output the problem and solutions. It will get a Wrong Answer verdict. These two solutions share 9 edges and the second solution doesn't satisfy all clues.

Problem G. Graph Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds 1024 megabytes

You are given a directed graph with n vertices and m edges. You want to answer q queries.
For each query, you are given $k_{1}, p_{1}, p_{2}, \ldots, p_{k_{1}}, k_{2}, s_{1}, t_{1}, s_{2}, t_{2}, \ldots, s_{k_{2}}, t_{k_{2}}$. For all $i\left(1 \leq i \leq k_{2}\right)$, answer whether there is a path from s_{i} to t_{i} if $p_{1}, p_{2}, \ldots, p_{k_{1}}$ are deleted. Queries are independent.

Input

In the first line, n, $m(1 \leq n \leq 500,0 \leq m \leq n(n-1))$.
In the following m lines, $u, v(1 \leq u, v \leq n, u \neq v)$ - a directed edge in the graph. It's guaranteed that there is no parallel edges.
In the next line, $q\left(1 \leq q \leq 4 \times 10^{5}\right)$. To make sure you answer the queries online, the input is encrypted. The input can be decrypted using the following pseudocode:

```
cnt = 0
for i = 1 ... q
    read(k1)
    for j = 1 ... k1
        read(p'[j])
        p[j] =(p'[j] + cnt - 1) % n + 1
    read(k2)
    for j = 1 ... k2
        read(s', t')
        s = (s' + cnt - 1) % n + 1
        t = (t' + cnt - 1) % n + 1
        cnt += query(s, t)
// if s can reach t, query return 1, otherwise, query return 0
```

In the following $2 q$ lines, for each query:

- In the first line, $k_{1}, p_{1}^{\prime}, \ldots, p_{k_{1}}^{\prime}$. It's guaranteed that p_{i} are distinct.
- In the second line, $k_{2}, s_{1}^{\prime}, t_{1}^{\prime}, \ldots, s_{k_{2}}^{\prime}, t_{k_{2}}^{\prime}$. It's guaranteed that all s_{i}, t_{i} are different from all p_{i}.
- It's guaranteed that $1 \leq k_{1} \leq \min (n-2,6), \sum k_{2} \leq 4 \times 10^{6}, 1 \leq p_{i}^{\prime}, s_{i}^{\prime}, t_{i}^{\prime} \leq n$.

Output

For each query, output a binary string with length k_{2} - the answer of query (s, t) in order.

Example

		standard input		standard output
5	4			01
1	2			
2	3			
3	4			
4	5			
2				
1				
1	4			
2	1	5	1	3

Note

It's recommended to use Fast IO.

Problem H. Hard Problem

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 1024 megabytes
You are given a sequence of nonnegative integers $a_{1}, a_{2}, \ldots, a_{n}$. You can perform the following three types of operations any number of times.

- Choose an interval $[l, r]$, decrease all numbers in the interval by 1.
- Choose an interval $[l, r]$, decrease all numbers with odd indices in the interval by 1.
- Choose an interval $[l, r]$, decrease all numbers with even indices in the interval by 1.

Output the minimum number of operations to make all numbers equal to 0 .

Input

In the first line, $T(1 \leq T \leq 10)$ - the number of test cases.
For each test case:

- In the first line, $n\left(1 \leq n \leq 10^{5}\right)$.
- In the second line, $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq 10^{9}\right)$.

Output

For each test case, one integer - the answer.

Example

standard input	standard output
```3 5 21212 8 1000000000 1000000000 0 1000000000 \ 1000000000 0 1000000000 1000000000 (There won't be extra line breakers \ in the actual test cases.) 13 114451419198810```	$\begin{aligned} & 2 \\ & 3000000000 \\ & 19 \end{aligned}$

## Problem I. Interval Problem

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You are given $n$ intervals $\left[l_{i}, r_{i}\right]$. If two intervals intersect, add an undirected, unweighted edge between them.

Let $d(i, j)$ be the length of the shortest path between the $i$-th interval and the $j$-th interval. If there is no path from $i$ to $j, d(i, j)=0$.
For $i=1,2, \ldots, n$, output $\sum_{j=1}^{n} d(i, j)$.

## Input

In the first line, $n\left(1 \leq n \leq 2 \times 10^{5}\right)$.
In the following $n$ lines, $l_{i}, r_{i}\left(1 \leq l_{i}<r_{i} \leq 2 n\right)$. It's guaranteed that the endpoints of intervals are distinct.

## Output

$n$ lines, the answer of $i=1,2, \ldots, n$.

## Example

	standard input		standard output
5	3	7	
2	7	5	
1	9	4	
5	10	8	5

## Problem J. Junk Problem

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You are given a grid graph with $n$ rows and $m$ columns. Most edges are directed, which means you can walk from $(x, y)$ to $(x+1, y)$ or $(x, y+1)$. $k$ horizontal edges are bidirectional, which means you can walk from $(x, y)$ to $(x, y+1)$, and $(x, y+1)$ to $(x, y)$ too. It's guaranteed that there is no pair of bidirectional edges that share an endpoint.

You need to find $l$ vertex-disjoint simple paths, where the $i$-th is from $\left(1, a_{i}\right)$ to $\left(n, b_{i}\right)$. For a set of paths, we call a bidirectional edge bad if neither of its endpoints is visited by any of the paths in this set.
Output the number of all $l$ vertex-disjoint simple paths without any bad edges, modulo 998244353.

## Input

In the first line, $n, m, l, k(2 \leq n, m \leq 100,1 \leq l \leq 50,0 \leq k \leq 50)$.
In the second line, $a_{1}, a_{2}, \ldots, a_{l}\left(1 \leq a_{1}<a_{2}<\cdots<a_{l} \leq m\right)$.
In the third line, $b_{1}, b_{2}, \ldots, b_{l}\left(1 \leq b_{1}<b_{2}<\cdots<b_{l} \leq m\right)$.
In the following $k$ lines, $x_{i}, y_{i}\left(1 \leq x_{i} \leq n, 1 \leq y_{i}<m\right)$ each line, which denote that the edge ( $x_{i}, y_{i}$ ) to $\left(x_{i}, y_{i}+1\right)$ is bidirectional.
It's guaranteed that there is no pair of bidirectional edges that share an endpoint.

## Output

One integer - the answer.

## Examples

		standard input		standard output
2	2	1	2	2
2				
1				
1	1			
2	1			
3	4	2	1	
1	4		388035318	
1	4			
2	2			
10	10	3	4	
1	2	3		
8	9	10		
2	3			
2	5			
4	6			
7	8			

## Problem K. Knapsack Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

You are given $2^{k}-1$ numbers $c_{1}, c_{2}, \ldots, c_{2^{k}-1}$ and $k$ numbers $a_{0}, a_{1}, \ldots a_{k-1}$.
You want to find nonnegative integers $x_{1}, x_{2}, \ldots, x_{2^{k}-1}$ such that for all $j(0 \leq j<k)$

$$
\sum_{i=1}^{2^{k}-1}\left(\left\lfloor i / 2^{j}\right\rfloor \bmod 2\right) x_{i}=a_{j}
$$

holds and $\sum_{i=1}^{2^{k}-1} x_{i} c_{i}$ is maximized.

## Input

In the first line, $T(1 \leq T \leq 100)-$ the number of test cases.
For each test case:

- In the first line, $k(2 \leq k \leq 4)$.
- In the second line, $c_{1}, c_{2}, \ldots, c_{2^{k}-1}\left(0 \leq c_{i} \leq 10^{8}\right)$.
- In the third line, $a_{0}, \ldots, a_{k-1}\left(1 \leq a_{i} \leq 10^{9}\right)$.


## Output

For each test case, one integer - the answer.

## Example

standard input	standard output
```3 2 124 45 3 3226252 19270256 2430652 1187613 \ 12496062 10286165 17494834 24 85 34 4 901133 6693218 13245489 14740234 \ 16186210 11382783 19277321 3855635 \ 16523184 10168517 16195031 971041 \ 10303441 }83958991161855 (There won't be extra line breakers \ in the actual test cases.) 529321239218214127 92942310 207467810```	$\begin{aligned} & 18 \\ & 1949753378 \\ & 7832404777567179 \end{aligned}$

Problem L. Linear Congruential Generator Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

Consider the following $\mathrm{C}++$ code to generate a pseudorandom permutation.

```
long long x, a, b, p;
int n;
long long rand() {
    x = ((__int128)x * a + b) % p;
    return x;
}
int main() {
    cin >> n;
    cin >> x >> a >> b >> p;
    for (int i = 1; i <= n; i++) { //random shuffle [1, 2,..., n]
        perm[i] = i;
        swap(perm[i], perm[rand() % i + 1]);
    }
    for (int i = 1; i <= n; i++) { //print the result
        cout << perm[i] << (i == n ? '\n' : , ');
    }
}
```

You are given n, a, b, p, and the output perm $_{1}$, perm $_{2}, \ldots$, perm $_{n}$, find $x(0 \leq x<p)$.

Input

In the first line, $n\left(n=10^{5}\right)$.
In the second line, perm $_{1}$, perm $_{2}, \ldots$, perm $_{n}\left(1 \leq \operatorname{perm}_{i} \leq n\right)$.
In the third line, $a, b, p\left(2 \leq a<p, 0 \leq b<p, 500 \leq p \leq 10^{16}\right)$. p is a prime, a, b, x are chosen uniformly at random from their respective ranges.

Output

One integer $-x$. If there are multiple solutions, you may output any.

Example

standard input	standard output
100000	681779867
$3889835776381928060584959 \ldots$	
356846063 184710711 911417497	
(truncated)	

Note

The full sample test case is available as an attachment in the contest system.

Problem M. Minimum Element Problem

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

We call two permutations $p_{1}, p_{2}, \ldots, p_{n}$ and $q_{1}, q_{2}, \ldots, q_{n}$ equivalent if and only if for every pair (i, j) $(1 \leq i \leq j \leq n)$, the indices of the minimum element of $p_{i}, p_{i+1}, \ldots, p_{j}$ and $q_{i}, q_{i+1}, \ldots, q_{j}$ are the same.

Given x and y, consider the set of all permutations p of $\{1,2, \ldots, n\}$ such that $p_{x}=y$. Find the maximum number of permutations you can pick from this set such that no two are equivalent. Output this number modulo 998244353.

The problem is too easy, so output the answer for every $y=1,2, \ldots, n$.

Input

In the first line $n, x\left(1 \leq n \leq 5 \times 10^{5}, 1 \leq x \leq n\right)$.

Output

n lines, answers for $y=1,2, \ldots, n$.

Examples

standard input		standard output
52	5	
	10	
	16	
	20	
	14	
	588	
	1176	
	2716	
	4942	
	7407	
	9101	
	9636	
	9167	
	7596	
	4862	

