
The 1st Universal Cup
Stage 12: Ōokayama (TTPC2022), April, 15, 2023

Problem A. XOR Tree Path
The color of vertex v is determined by the number of leaves selected from the subtree of v. Also, selecting
two leaves returns the color of v to its original state, so it is important whether an even or odd number
of leaves is selected from the subtree of v.

Therefore, this problem can be solved by the following DP on trees:

dp[v][i]: the maximum number of black vertices in the subtree of v when the number of selected leaves in
the subtree of v modulo 2 is i.

The time complexity is O(N).

Problem B. Magical Wallet
This problem can be solved by the following DP:

dp[i][j]: the maximum number of products that can be bought when the magic wallet contains j yen after
visiting the i-th shop.

To simplify the transitions, we assume that the amount of money in the wallet (j) is always the maximum
possible. Let p(j) be the set of integers that can be obtained by rearranging the digits of j, and
m(j) := max p(j).

The DP transitions are as follows:

• dp[0][m(X)]← 0

• dp[i + 1][j]← dp[i][j]

• If j equals m(j):

– For k ∈ p(j):

∗ If k ≥ Ai:
· dp[i + 1][m(k −Ai)]← dp[i][j] + 1

The time complexity is O(NM).

Problem C. Parallel Processing (Easy)
The correspondence between N and L is as follows:

N 2 3–4 5–8 9–11 12–13 14–16
L 1 2 3 4 5 6

Therefore, this problem can be solved by writing a carefully designed brute-force program to search for a
solution or manually constructing a solution for N = 2, 4, 8, 11, 13, 16.

Here is an example of a solution for N = 16:

Page 1 of 10

The 1st Universal Cup
Stage 12: Ōokayama (TTPC2022), April, 15, 2023

Problem D. Parallel Processing (Hard)
In conclusion, the minimum number of instructions is: L =

⌈
max

(
log2N, 25(N − 1)

)⌉
.

Lower bound 1: log2N

It is clear from the fact that the length of an integer sequence that can be constructed with L instructions
is at most 2L.

Lower bound 2: 2
5(N − 1)

Assuming N ≥ 9:

• It is pointless to create an integer sequence that is not in the form of (l, l + 1, . . . , r − 1, r).

• We will relax the conditions and assume that all previously created sequences can be used without
overwriting variables.

• It is pointless to create the same interval multiple times.

• Because each interval is created only once, we know that creating interval [l, r] implies the existence
of a unique d (l ≤ d < r) such that [l, d] + [d + 1, r] creates [l, r].

• Considering a graph of which interval is created from which interval, we see that the structure is
like binary trees rooted at each of the intervals [1, 1], [1, 2], . . . , [1, N].

• Taking only the necessary parts from this graph to construct [1, N], we obtain a binary tree with
2N − 1 vertices and 2N − 2 edges, which contains (N − 1) ⊕ operations. We denote this binary tree
by T .

• If we look at T from the root down, we see that it repeatedly splits a certain interval in two.
Therefore, if we take any two vertices from T , the two intervals either do not intersect or one is
contained in the other.

• We fix the number of ⊕ operations to S, and we have L ≥ S
4 .

• Let A be the number of vertices in T that have the form [1, i]. Since these vertices have a dependency
on the previous calculation result, we have L ≥ A− 1.

• If we use the calculation result from more than two steps ago, there exist two vertices in T where
two intervals intersect, and neither of them is contained in the other.

Page 2 of 10

The 1st Universal Cup
Stage 12: Ōokayama (TTPC2022), April, 15, 2023

• Since there are N − 1 operations to calculate T and N −A or more operations to calculate vertices
that are not included in T , we have (N − 1) + (N −A) ≤ S.

• From this, we obtain A ≥ 2N − 1− S, and hence L ≥ 2N − 2− S.

• Therefore, we have L ≥ max
(
S
4 , 2N − 2− S

)
≥ 2

5(N − 1).

Achieving the lower bound: L =
⌈
2
5(N − 1)

⌉
By following the instructions below, it is possible to achieve L =

⌈
2
5(N − 1)

⌉
.

Idea: First, divide the sequence A1, A2, . . . , AN into L + 1 blocks. Then, calculate the cumulative sum of
each block while also computing the cumulative sum of the entire block. Note that since there are L + 1
blocks, the computation of the cumulative sum of the entire block needs to be advanced by one operation
each time.

Based on this, divide the blocks. While being mindful to advance the cumulative sum of the entire block
at each step, try to make each block as long as possible.

Once the length of the blocks is sufficient, calculate the remaining part instead of extending each block.

By doing the above, we can achieve the lower bound of
⌈
2
5(N − 1)

⌉
instructions.

Problem E. Five Med Sum
To solve the problem, we need to count the number of times each value in the sequence appears as a
median.

First, we sort the 5N integers with tags indicating which of the five sequences they belong to. Let
F = ((F1, t1), (F2, t2), . . . , (F5N , t5N)) denote the sorted sequence, where ti is the tag.

Then, for each k = 1, 2, . . . , 5N , we need to count the number of tuples (i, j, l,m) such that
1 ≤ i < j < k < l < m ≤ 5N and {ti, tj , tk, tl, tm} = {A,B,C,D,E}. We can solve this problem in
O(1) time by brute-forcing all pairs {ti, tj} and using cumulative sums.

The time complexity is O(N logN).

Problem F. Forestry
We will rephrase the problem as finding the expected score when each edge is independently cut with a
probability of 1/2.

Page 3 of 10

The 1st Universal Cup
Stage 12: Ōokayama (TTPC2022), April, 15, 2023

Choose an arbitrary root vertex, and let T be the rooted tree. For a vertex v, let T ′ be the subtree of v
and let size(v) be the number of vertices in T ′. Define the following DP:

dp[v][x]: the probability that the minimum value of a connected component of T ′ containing v is x, when
edges of T ′ are randomly cut

Calculate this DP and obtain the answer by summing the “contribution to the answer by all connected
subgraph of T where v is the shallowest vertex” for each v. The DP table has 109 possible values for the
second argument x, but only size(v) values are non-zero, so it can be compressed by keeping only non-zero
values.

Consider the time complexity of calculating the DP in the compressed state. If v has two children c1, c2,
we can calculate dp[v][∗] from dp[c1][∗] and dp[c2][∗] using cumulative sum in O(size(c1) + size(c2))
time. If v has three or more children, we can repeatedly merge pairs of children to calculate dp[v][∗]
in O(size(v) log(N)) time.

Method using Merge Technique

The calculation of dp[v][∗] from dp[c1][∗] and dp[c2][∗] can be viewed as performing a single-point update
or range multiplication on dp[c1][∗] using information from dp[c2][∗]. Therefore, if we manage them
with a lazy propagation segment tree that creates only the necessary elements, we can merge them
in O(min(size(c1), size(c2)) log(A)) time. The overall time complexity is O(N log(N) log(A)), but this can
be reduced to O(N log(A)) if we handle the segment tree merge efficiently.

Method for accelerating Segment Tree merging: https://codeforces.com/blog/entry/49446

Method using Top Tree

We use the technique explained in problems such as https://atcoder.jp/contests/abc269/tasks/abc269_h.
Let C be a connected subgraph of T that is only connected to the outside through u and v. The data
that needs to be maintained is as follows:

• For each x, the probability that u and v are connected and the minimum value of the connected
component which contains u and v is x when the edges of C are randomly cut.

• For each x, the probability that u and v are not connected and the minimum value of the connected
component which contains u is x when the edges of C are randomly cut.

• For each x, the probability that u and v are not connected and the minimum value of the connected
component which contains v is x when the edges of C are randomly cut.

• The contribution to the answer from the connected components which do not contain either u or v
when the edges of C are randomly cut.

Two data can be merged in linear time with respect to the sum of the number of vertices. Thus, we can
solve the problem in O(N log(N)) time overall.

Problem G. Range NEQ
We can solve this problem using the principle of inclusion and exclusion.

Consider a sequence of integers (k1, . . . , kN), and let us consider the cases where kj indices i satisfy⌊
i
M

⌋
=
⌊
Pi
M

⌋
= j, for each j = 0, 1, . . . , N − 1.

In this case, the number of ways to choose these kj indices is
(
M
kj

)
, and the number of ways to assign

values to these kj indices is M !
(M−kj)! .

Page 4 of 10

The 1st Universal Cup
Stage 12: Ōokayama (TTPC2022), April, 15, 2023

The number of ways to assign values to the remaining (NM −
∑N−1

j=0 kj) indices is (NM −
∑N−1

j=0 kj)!.

Therefore, the number of permutations corresponding to a given (k0, k1, . . . , kN−1) is:

(NM −
N−1∑
j=0

kj)!
N−1∏
j=0

M !

((M − kj)!)2kj !

By the principle of inclusion and exclusion, the answer is:

∑
(k0,k1,...,kN−1)

(−1)
∑N−1

j=0 kj (NM −
N−1∑
j=0

kj)!
N−1∏
j=0

M !

((M − kj)!)2kj !

We can compute it by considering the generating function. Let

f(x) :=
M∑
k=0

M !

((M − k)!)2k!
(−x)k, g(x) := (f(x))N

Then, the answer is:

NM∑
s=0

(NM − s)!([xs]g(x))

The time complexity is O(NM log(NM)).

Problem H. Expanded Hull
When K varies, the answer to this problem is a 3rd-degree polynomial in K.1

Therefore, we can do the following:

Let X := maxi{|xi|, |yi|, |zi|}.

1. Find the planes that constitute the 3D convex hull. A O(N4) algorithm suffices:

(a) Fix three non-collinear points and compute the candidate planes.

(b) If all points lie on one side of the plane, it is valid.

2. For k = 1, 2, 3, multiply the coordinates by k, and count the number of lattice points inside (including
the boundary) the resulting convex hull.

• Fix x and y in the range −X ≤ x, y ≤ X, and compute the intersection with the convex hull.

3. Interpolate the Ehrhart polynomial and evaluate it at K to obtain the answer.

The time complexity is O(N4 + NX2).

Instead of counting lattice points inside the convex hull for k = 1, 2, 3, we can compute the following three
values for k = 1 to obtain the Ehrhart polynomial more efficiently:

• Volume of the convex hull

• Number of lattice points inside (including the boundary) the convex hull

• Number of lattice points inside (excluding the boundary) the convex hull
1https://en.wikipedia.org/wiki/Ehrhart_polynomial

Page 5 of 10

The 1st Universal Cup
Stage 12: Ōokayama (TTPC2022), April, 15, 2023

With further effort, the time complexity can be reduced to O(N logN + NX logX). Good luck with the
implementation!

Problem I. Peaceful Results
The combinations of their choices that result in a tie are RRR, PPP, SSS, RPS, PSR, SRP, RSP, PRS,
and SPR. Let X1, X2, . . . , X9 be the number of times each combination occurs in N games of rock-paper-
scissors. Then, there are N !

X1!X2!...X9!
possible ways to play the N games that satisfy these constraints.

Let us consider the conditions that X1, X2, . . . , X9 must satisfy. If we consider the total number of times
each hand is used, the following equations hold:

X1 + X4 + X7 = AR

X2 + X5 + X8 = AP

X3 + X6 + X9 = AS

X1 + X6 + X8 = BR

X2 + X4 + X9 = BP

X3 + X5 + X7 = BS

X1 + X5 + X9 = CR

X2 + X6 + X7 = CP

X3 + X4 + X8 = CS

↔

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0

X1

X2

X3

X4

X5

X6

X7

X8

X9

=

AR

AP

AS

BR

BP

BS

CR

CP

CS

The rank of this 9×9 matrix is 7, so X1, . . . , X9 are not uniquely determined. If we define Y2 := X2−X1,
Y3 := X3 −X1, Y5 := X5 −X4, Y6 := X6 −X4, Y8 := X8 −X7, and Y9 := X9 −X7, then

1 0 1 0 1 0
0 1 0 1 0 1
1 0 0 −1 −1 1
0 1 1 −1 −1 0
1 0 −1 1 0 −1
0 1 −1 0 1 −1

Y2
Y3
Y5
Y6
Y8
Y9

 =

AP −AR

AS −AR

BP −BR

BS −BR

CP − CR

CS − CR

holds, and since this 6×6 matrix is full rank, Y2, Y3, Y5, Y6, Y8, Y9 are uniquely determined. It is necessary
that these are integers.

Therefore, (X1, X2, X3, X4, X5, X6, X7, X8, X9) can be expressed as (x1, x1+Y2, x1+Y3, x4, x4+Y5, x4+Y6,
x7, x7 + Y8, x7 + Y9) using three integer variables x1, x4, x7 and six integer constants Y2, Y3, Y5, Y6, Y8, Y9.
Since all of these must be non-negative and their sum must beN , there exist non-negative integer constants
C, l1, l4, l7 such that:

x1 + x4 + x7 = C

x1 ≥ l1

x4 ≥ l4

x7 ≥ l7

Under these conditions, x1, x4, x7 can move freely. The sum of the following expression when x1, x4, x7
satisfy the above conditions:

N !

x1!(x1 + Y2)!(x1 + Y3)!x4!(x4 + Y5)!(x4 + Y6)!x7!(x7 + Y8)!(x7 + Y9)!

should be calculated, which can be done efficiently using FFT. The time complexity is O(N logN).

Page 6 of 10

The 1st Universal Cup
Stage 12: Ōokayama (TTPC2022), April, 15, 2023

Problem J. Make Convex Sequence
Let S be the convex hull of the set of points {(i, y) | y ≥ Ri}, and define the sequence T = (T1, T2, . . . , TN)
as Ti := min{y | (i, y) ∈ S}. In other words, we take the lower convex hull of R to obtain T .

The T obtained in this way is the “largest” sequence that satisfies all the conditions in the problem
statement except for the condition concerning L. More precisely, for any A satisfying the following
conditions, we have Ai ≤ Ti.

• For all 1 ≤ i ≤ N , Ai ≤ Ri holds.

• For all 2 ≤ i ≤ N − 1, Ai−1 + Ai+1 ≥ 2Ai holds.

This can be derived from the definition of a convex hull.

Therefore, the answer is Yes if T satisfies Li ≤ Ti, and No otherwise. T can be computed in O(N) time
using algorithms such as Andrew’s monotone chain.

Problem K. Count Arithmetic Progression
We assume that the indices of L, R, and A are 0-indexed for simplicity. We also define X := max

i
Ri.

Fix a common difference d. The possible range for the initial term A0 can be obtained as follows:

max
i
{−id + Li} ≤ A0 ≤ min

i
{−id + Ri}

−id + Li is a linear function of d for each i. Therefore, the maximum value of these functions,
max

i
{−id + Li}, forms a piecewise linear curve that is concave downward with respect to d. This curve

can be calculated in O(N) time using techniques such as the Convex Hull Trick. Similarly, the conditions
for R form a piecewise linear curve that is convex upward with respect to d.

We need to count the number of lattice points within the region enclosed by these two piecewise linear
functions. By appropriately dividing the range of d into O(N) intervals, the region enclosed by the curves
can be partitioned into trapezoids, and the number of lattice points in each trapezoid can be calculated
in O(1) time.

The time complexity is O(N).

Problem L. Many Products
For simplicity, we write

∑
(x1,x2,...,xN)∈X

as
∑

x1...xN=M

.

Expanding
N∏
i=1

(xi + Ai) as a sum of 2N terms T1, T2, . . . , T2N , we have

∑
x1...xN=M

 2N∑
s=1

Ts

 =

2N∑
s=1

 ∑
x1...xN=M

Ts

Therefore, it doesn’t matter which x1, x2, . . . , xN appear in Ts, but rather how many times they appear
in total. That is, ignoring the subscripts of x1, x2, . . . , xN , we can write

N∏
i=1

(x + Ai) = B0 + B1x + · · ·+ BNxN

and the answer can be expressed as

Page 7 of 10

The 1st Universal Cup
Stage 12: Ōokayama (TTPC2022), April, 15, 2023

N∑
k=0

Bk

 ∑
x1...xN=M

x1x2 . . . xk

Here,

 ∑
x1...xN=P

x1x2 . . . xk

 is multiplicative with respect to P . Therefore, if we factorize M into primes

M = pe11 . . . pecc , we have:

 ∑
x1...xN=M

x1x2 . . . xk

 =

c∏
j=1

 ∑
x1...xN=p

ej
j

x1x2 . . . xk

We can express the sum as a simple formula using binomial coefficients. Specifically, we have:

∑
x1...xN=p

ej
j

x1x2 . . . xk =

(ej+N−1

N−1
)

(k = 0)∑ej
d=0 p

d
j

(
d+k−1
k−1

)(ej−d+N−k−1
N−k−1

)
(0 < k < N)

p
ej
j

(ej+N−1
N−1

)
(k = N)

Computing B0, . . . , BN can be done using convolution in O(N(logN)2) time. Factoring M into primes
takes O(

√
M) time, and other computations can be done in O(N logM) time.

Problem M. Colorful Graph
You can paint all vertices in the same color if they belong to the same strongly connected component.
Compress the strongly connected components into a single vertex to make the graph a DAG.

When there are edges i → j and j → k, add an edge i → k. This reduces the problem to the minimum
path cover problem in a directed acyclic graph2, which can be solved by maximum flow. However, the
number of edges can reach Θ(N2), which will result in insufficient memory.

We can reduce edges as follows:

• Prepare the following vertices:

– src, dst

– U1, · · · , UN

– V1, · · · , VN

• Add an edge from src to all Vi with capacity 1.

• Add an edge from all Ui to dst with capacity 1.

• For each edge i = 1, . . . ,M , add an edge from VAi to UBi with capacity ∞.

• For all i = 1, . . . , N , add an edge from Ui to Vi with capacity ∞.
2https://en.wikipedia.org/wiki/Maximum_flow_problem#Minimum_path_cover_in_directed_acyclic_graph

Page 8 of 10

The 1st Universal Cup
Stage 12: Ōokayama (TTPC2022), April, 15, 2023

The maximum flow of this network is N , and the number of edges is at most 3N +M , so it can be solved
by Ford-Fulkerson algorithm with time complexity O(N(N + M)) and space complexity O(N + M).

After obtaining the maximum flow, we can color the graph by looking at the flow on each edge with time
complexity O(N2) and space complexity O(N).

Finally, restore the original graph from the compressed graph obtained by the strongly connected
component decomposition and output it. The overall time complexity is O(N(N + M)), and the space
complexity is O(N + M).

Problem N. XOR Reachable
We consider traversing D = 0, 1, . . . , 230−1 in order. For each edge j, the set of D such that (Cj⊕D) < K
can be decomposed into at most 30 intervals. Therefore, this problem can be reduced to an offline dynamic
connectivity problem where there are 30M edge additions and deletions.

This can be solved in O((Q+M logN) logMAX) time using undoable Union-Find and divide-and-conquer.

Problem O. Jewel Game
Noting that K ≤ 10, we want to do the following DP.

dp[set of remaining gems][position of the current player][position of the other player] = (the score of the game)

However, there are loops in the calculation, so we cannot easily determine the values.

One way to analyze games with loops is to use backward induction, which is usually used to determine
wins, losses, or draws, but we can use it to determine the score of the game.

If there are loops in the calculation, the set of remaining gems does not change within the loop. Therefore,
we can determine the value by performing backward induction in order of increasing size of the set of
remaining gems.

In other words, we can do the following:

• Perform backward induction 2K times, in order of increasing size of the set of remaining gems.

1. If there is a vertex for which the values of all its outgoing edges are already determined, then
we can determine the value of that vertex.

Page 9 of 10

The 1st Universal Cup
Stage 12: Ōokayama (TTPC2022), April, 15, 2023

2. If there are still vertices whose values have not been determined, then examine the destination of
all outgoing edges from those vertices and choose the highest value, if positive. Then, determine
the value of the vertex from which that edge originates.

3. If the value still cannot be determined, then it is 0.

The time complexity is O(2KN(N + M) logN).

Page 10 of 10

