Osijek Competitive Programming Camp Winter 2023 Day 9: Magical Story of LaLa Solutions

Problem & Solution Author: Aeren

February 26, 2023

• First Solved By: Heno World at 00:14.

Problem Description

You're given a binary triangular grid. Determine whether you can make it all 0 by flipping one of 3N row arbitrary many times.

• The operations commute: the order of operations doesn't matter.

- The operations commute: the order of operations doesn't matter.
- Two of the same operation cancels each other.

- The operations commute: the order of operations doesn't matter.
- Two of the same operation cancels each other.
- Fixing two longest rows in one direction and the longest row in another direction uniquely determines the rest.

- The operations commute: the order of operations doesn't matter.
- Two of the same operation cancels each other.
- Fixing two longest rows in one direction and the longest row in another direction uniquely determines the rest.

Time Complexity: $O(N^2)$

• First Solved By: Hell Hunt at 00:32.

Problem Description

You're given N circles. Determine if their convex hull contains the origin.

• If any circles contain the origin in its interior or on its boundary, the answer is "YES".

- If any circles contain the origin in its interior or on its boundary, the answer is "YES".
- Otherwise, each circles have 2 tangent rays starting from the origin. The answer is "YES" if and only if no half-plane contains all 2*N* rays.

- If any circles contain the origin in its interior or on its boundary, the answer is "YES".
- Otherwise, each circles have 2 tangent rays starting from the origin. The answer is "YES" if and only if no half-plane contains all 2*N* rays.

• It's safe to use doubles in computation due to the distance condition.

- If any circles contain the origin in its interior or on its boundary, the answer is "YES".
- Otherwise, each circles have 2 tangent rays starting from the origin. The answer is "YES" if and only if no half-plane contains all 2*N* rays.

• It's safe to use doubles in computation due to the distance condition. **Time Complexity**: $O(N \cdot \log N)$ from sorting rays.

Alternative Solution

There exists an $O(N \cdot \log N)$ algorithm computing the convex hull of N circles. Reference paper: "A convex hull algorithm for discs, and applications" by David Rappaport Construct the hull, then check that for each boundary segment and arc, directed counter-clockwise, the origin lies on the left.

• First Solved By: HoMaMaOvO at 01:14

Problem Description

Given cells in a rectangular grid where some cells are unavailable, find the number of ways to partition the available cells into U-shaped pieces.

• The key observation is that merging two intertwined pieces produces a unique partitioning strategy, if there is one. We'll call this a **merged piece**.

• The proof of the above statement naturally yields the algorithm to solve this problem.

- Suppose that there exists a valid partitioning and an available cell. Let (i, j) be the lexicographically smallest available cell.
- If there is exactly one way to cover (i, j), cover it and go back to step 1.

• Otherwise, the following 8 cells must be available.

- Now there are two cases.
- Case 1: (i+1, j+1) is available.
- The piece covering (i, j) has to be the merged piece. There are two possible ways that the merged piece cover (i, j). Call them configuration A (the left one) and B (the right one) respectively.

• When either of the configuration is invalid, the case becomes trivial. Now assume that both are valid.

- If we can't fit a piece in the 3 by 3 square (with its top left corner) at (i + 1, j − 3), we're forced to choose configuration B, and we go back to the start.
- Now assume we can. Then the only way to cover (i, j + 3) with configuration B is the following, and it is easy to verify that configuration A doesn't work on it. Therefore, we choose A or B depending on the availability of the following partitioning.

• (End of case 1)

- Case 2: (i + 1, j + 1) is unavailable.
- There are 4 ways to cover all cells in the 3 by 3 square (with its top left corner) at (*i*, *j*). Call them configuration *L*, *BL*, *R*, *BR*, respectively.

• If exactly one of the configuration is valid, use it, then go back to the start.

- Now assume that at least 2 of them are valid. Since *L* and *BL* cannot be both valid, and the same for *R* and *BR*, we only have to consider 4 cases.
- Suppose L and R are valid, and assume that L is chosen. Then it's impossible to cover both (i + 1, j + 3) and (i + 2, j + 4) at once, so this case is impossible. Similar argument works when R is chosen instead. Therefore, this case is impossible.

• Suppose L and BR are valid, and assume that L is chosen.

Then it's impossible to cover both (i + 1, j + 3) and (i + 2, j + 4), so this case is impossible. Similarly, assuming R is chosen, (i + 1, j - 1) and (i + 2, j - 2) cannot both be covered as well, so this case is impossible.

• The case when R and BL are valid is impossible as well by a similar argument.

• Finally, suppose *BL* and *BR* are valid.

If (i + 1, j - 1) is available, *BR* must be chosen.

Otherwise, using a similar argument to the A & B case earlier, we chose BL or BR depending on the availability of the following partitioning:

(G) LaLa and Divination Magic

• First Solved By: Heno World at 01:21

(G) LaLa and Divination Magic

Problem Description

Given a set of solutions for a 2-SAT formula, recover the formula, or report that there isn't one.

• A literal in a 2-SAT formula is either a variable or a negation of a variable. Each literal L has an associated variable V(L) and an associated value E(L), either true or false depending on whether it's a positive literal or a negative literal.

- A literal in a 2-SAT formula is either a variable or a negation of a variable. Each literal L has an associated variable V(L) and an associated value E(L), either true or false depending on whether it's a positive literal or a negative literal.
- A literal L is said to **imply** another literal M if for each solution where V(L) is set to E(L), V(M) is set to E(M).

- A literal in a 2-SAT formula is either a variable or a negation of a variable. Each literal L has an associated variable V(L) and an associated value E(L), either true or false depending on whether it's a positive literal or a negative literal.
- A literal L is said to **imply** another literal M if for each solution where V(L) is set to E(L), V(M) is set to E(M).
- Let F be the 2-SAT formula where we've added every clause of form $\neg L \lor M$.

- A literal in a 2-SAT formula is either a variable or a negation of a variable. Each literal L has an associated variable V(L) and an associated value E(L), either true or false depending on whether it's a positive literal or a negative literal.
- A literal L is said to **imply** another literal M if for each solution where V(L) is set to E(L), V(M) is set to E(M).
- Let F be the 2-SAT formula where we've added every clause of form $\neg L \lor M$.
- If there is a corresponding 2-SAT formula, we've included all of its clauses. The extra clauses added won't produce any contradiction either.

- A literal in a 2-SAT formula is either a variable or a negation of a variable. Each literal L has an associated variable V(L) and an associated value E(L), either true or false depending on whether it's a positive literal or a negative literal.
- A literal L is said to **imply** another literal M if for each solution where V(L) is set to E(L), V(M) is set to E(M).
- Let F be the 2-SAT formula where we've added every clause of form $\neg L \lor M$.
- If there is a corresponding 2-SAT formula, we've included all of its clauses. The extra clauses added won't produce any contradiction either.
- Thus, the 2-SAT formula exists if and only if the set of solutions of F is equal to the input.

(G) LaLa and Divination Magic

1. Let G be the directed graph whose vertices are the literals and for each clause $L \vee M$, there are two edges $\neg L \rightarrow M$ and $\neg M \rightarrow L$.

- 1. Let G be the directed graph whose vertices are the literals and for each clause $L \vee M$, there are two edges $\neg L \rightarrow M$ and $\neg M \rightarrow L$.
- 2. If there exists a literal L such that L and $\neg L$ lies in the same SCC, there are no solution.

- 1. Let G be the directed graph whose vertices are the literals and for each clause $L \vee M$, there are two edges $\neg L \rightarrow M$ and $\neg M \rightarrow L$.
- 2. If there exists a literal L such that L and $\neg L$ lies in the same SCC, there are no solution.
- 3. Every assignment where there are no path from true to false is valid.

- 1. Let G be the directed graph whose vertices are the literals and for each clause $L \vee M$, there are two edges $\neg L \rightarrow M$ and $\neg M \rightarrow L$.
- 2. If there exists a literal L such that L and $\neg L$ lies in the same SCC, there are no solution.
- 3. Every assignment where there are no path from true to false is valid.
- 4. Sweep through each literal L in topological order, and if it's unassigned, set it to true and false, and recurse on each case.
Enumerating all solutions of a 2-SAT formula

- 1. Let G be the directed graph whose vertices are the literals and for each clause $L \vee M$, there are two edges $\neg L \rightarrow M$ and $\neg M \rightarrow L$.
- 2. If there exists a literal L such that L and $\neg L$ lies in the same SCC, there are no solution.
- 3. Every assignment where there are no path from true to false is valid.
- 4. Sweep through each literal L in topological order, and if it's unassigned, set it to true and false, and recurse on each case.
- 5. If it's set to true, the literals reachable from it must also be set to true.

Enumerating all solutions of a 2-SAT formula

- 1. Let G be the directed graph whose vertices are the literals and for each clause $L \vee M$, there are two edges $\neg L \rightarrow M$ and $\neg M \rightarrow L$.
- 2. If there exists a literal L such that L and $\neg L$ lies in the same SCC, there are no solution.
- 3. Every assignment where there are no path from true to false is valid.
- 4. Sweep through each literal L in topological order, and if it's unassigned, set it to true and false, and recurse on each case.
- 5. If it's set to true, the literals reachable from it must also be set to true.

Time Complexity: $O(N \cdot M^2/w)$

(F) LaLa and Monster Hunting (Part 2) • First Solved By: Three Konjaks at 03:28

(F) LaLa and Monster Hunting (Part 2)

Problem Description

Given a simple graph, count the number of subgraphs isomorphic to the graph in the statement.

The model solution sequentially computes the following values.

- 1. For each vertex u, the number of 3-cycles passing through u.
- 2. For each undirected edge e, the number of 3-cycles passing through e.
- For each directed edge e = (u, v), the number of subgraphs with 4 vertices 0, 1, 2, 3 and 5 edges (0, 1), (1, 2), (2, 3), (3, 0), (1, 3) such that u and v corresponds to 0 and 1 respectively.
- 4. For each directed edge e = (u, v), the number of subgraphs with 5 vertices 0, 1, 2, 3, 4and 6 edges (0, 1), (1, 2), (2, 3), (3, 0), (1, 4), (4, 2) such that u and v corresponds to 0 and 1 respectively.
- 5. For each vertex u, the number of answer with tail length 1, 2, 3 such that u lies at the end of the tail.

Time Complexity: $O(n + m \cdot \sqrt{m})$

(I) LaLa and Spirit Summoning

• First Solved By: HoMaMaOvO at 02:41

Problem Description

Given an edge-colored graph, find the minimum degree of freedom of a graph whose edges all have distinct color, that can be obtained by deleting some edges from the original graph.

• Each edges either contribute to -1 degree of freedom or 0, and those -1 edges form a matroid. (Rigidity matroid)

- Each edges either contribute to -1 degree of freedom or 0, and those -1 edges form a matroid. (Rigidity matroid)
- A set of edges is independent IFF every subgraph S satisfies $2 \cdot |V| 3 \ge |E|$. (Laman's theorem)

- Each edges either contribute to -1 degree of freedom or 0, and those -1 edges form a matroid. (Rigidity matroid)
- A set of edges is independent IFF every subgraph S satisfies $2 \cdot |V| 3 \ge |E|$. (Laman's theorem)
- Independence oracle can be built by checking if 2-to-1 matching between vertices and edges still exists after quadrupling the new edge. (Pebble game algorithm)

- Each edges either contribute to -1 degree of freedom or 0, and those -1 edges form a matroid. (Rigidity matroid)
- A set of edges is independent IFF every subgraph S satisfies $2 \cdot |V| 3 \ge |E|$. (Laman's theorem)
- Independence oracle can be built by checking if 2-to-1 matching between vertices and edges still exists after quadrupling the new edge. (Pebble game algorithm)
- Matroid intersection algorithm + rigidity oracle with the pebble game algorithm gives a solution of complexity $O(N^2 \cdot M)$.

(H) LaLa and Harvesting

• First Solved By: Polish Mafia at 02:32

Problem Description

Given a vertex-weighted graph which is a union of

- 1. a cactus,
- 2. a cycle passing through all leaves of the DFS-tree of the cactus, and
- 3. a tree whose non-leaf vertices have degree \geq 12,

find an independent set with the maximum sum of weight.

• If there were no third stage, and the graph on the first phase were a tree, this graph is known as a **halin graph** and has treewidth ≤ 3.

- If there were no third stage, and the graph on the first phase were a tree, this graph is known as a halin graph and has treewidth ≤ 3.
- If there were no third stage, for each bag in the halin graph decomposition, you insert the DFS-tree root of the relevant cycles. The resulting decomposition has treewidth ≤ 4.

- If there were no third stage, and the graph on the first phase were a tree, this graph is known as a halin graph and has treewidth ≤ 3.
- If there were no third stage, for each bag in the halin graph decomposition, you insert the DFS-tree root of the relevant cycles. The resulting decomposition has treewidth ≤ 4.
- Merging a graph with treewidth ≤ A and a graph with vertex cover ≤ B result in a graph with treewidth ≤ A + B.

- If there were no third stage, and the graph on the first phase were a tree, this graph is known as a halin graph and has treewidth ≤ 3.
- If there were no third stage, for each bag in the halin graph decomposition, you insert the DFS-tree root of the relevant cycles. The resulting decomposition has treewidth \leq 4.
- Merging a graph with treewidth ≤ A and a graph with vertex cover ≤ B result in a graph with treewidth ≤ A + B.
- Since the tree on the third phase has vertex cover of size $\max(1, (k-1)/11)$, we can construct the decomposition of the input graph with width ≤ 13 . Now you can find the answer in $O(N \cdot 2^{5+(k-1)/11} \cdot (5 + (k-1)/11))$ time.

• First Solved By: Polish Mafia at 03:52

Problem Description

Construct a polygon with \leq 1,000 vertices which has a sequence of the flip operations of length between 120,000 and 1,000,000.

Here's one possible construction.

• Let *N* be a positive integer divisible by 4 and *d_i* be the direction vector of the *i*-th edge in CCW.

- Let *N* be a positive integer divisible by 4 and *d_i* be the direction vector of the *i*-th edge in CCW.
- (Group 1) For each $0 \le i \le N/2 2$, $d_i = (i + 1, (i + 1)^2)$.

- Let *N* be a positive integer divisible by 4 and *d_i* be the direction vector of the *i*-th edge in CCW.
- (Group 1) For each $0 \le i \le N/2 2$, $d_i = (i + 1, (i + 1)^2)$.
- (Group 2) For each $N/2 1 \le i \le N 2$ such that i is odd, $d_i = (1, 0)$.
- (Group 3) For each $N/2 1 \le i \le N 2$ such that *i* is even, $d_i = (N/2, (N/2)^2)$.

- Let *N* be a positive integer divisible by 4 and *d_i* be the direction vector of the *i*-th edge in CCW.
- (Group 1) For each $0 \le i \le N/2 2$, $d_i = (i + 1, (i + 1)^2)$.
- (Group 2) For each $N/2 1 \le i \le N 2$ such that i is odd, $d_i = (1, 0)$.
- (Group 3) For each $N/2 1 \le i \le N 2$ such that *i* is even, $d_i = (N/2, (N/2)^2)$.

Sliding down the first edge in the group 2 through all N/2 - 1 in group 1, and then sliding down the remaining N/4 - 1 edges in the group 2 one by one in order gives a sequence of operations of length $N^2/8 - 1$, which is equal to 12499 for N = 1000.

The construction credit goes to "Polygons Needing Many Flipturns" by Therese Biedl.

A hand-drawn illustration of the construction which might be easier for you to understand.

Illustration credit goes to Swistakk.

(J) LaLa and Magical Beast Summoning • First Solved By: –

Problem Description

Solve the range query problem of the non-commutative and non-associative binary operation Combine.

Assume every cell lies in the summoning field $\mathcal{F}(M, E, V)$.

• We define

•
$$-\mathcal{C}(L, A, I) = \mathcal{C}(L, I, A),$$

- $C(L_0, A_0, I_0) + C(L_1, A_1, I_1) = \text{Combine}(C(L_0, A_0, I_0), -C(L_1, A_1, I_1))$, and
- $e = \mathcal{C}(0, 3, -3)$, which is valid.

Assume every cell lies in the summoning field $\mathcal{F}(M, E, V)$.

• We define

•
$$-\mathcal{C}(L, A, I) = \mathcal{C}(L, I, A),$$

- $C(L_0, A_0, I_0) + C(L_1, A_1, I_1) = \text{Combine}(C(L_0, A_0, I_0), -C(L_1, A_1, I_1))$, and
- $e = \mathcal{C}(0, 3, -3)$, which is valid.
- With some algebra, it can be proved that
 - 1. $k_0 * C(L_0, A_0, I_0) + k_1 * C(L_1, A_1, I_1) = k_2 * (C(L_0, A_0, I_0) + C(L_1, A_1, I_1))$ for some integer $0 < k_2 < M$,
 - 2. $C(L_0, A_0, I_0) + (C(L_1, A_1, I_1) + C(L_2, A_2, I_2)) = k * ((C(L_0, A_0, I_0) + C(L_1, A_1, I_1)) + C(L_2, A_2, I_2))$ for some integer 0 < k < M,
 - 3. $e + C(L, A, I) = k_0 * (C(L, A, I) + e) = k_1 * C(L, A, I)$ for some integer $0 < k_0, k_1 < M$, and
 - 4. C(L, A, I) + (-C(L, A, I)) = k * e for some integer 0 < k < M.

• Note that the density of C(L, A, I) is the same as k * C(L, A, I) for all integer 0 < k < M.

- Note that the density of C(L, A, I) is the same as k * C(L, A, I) for all integer 0 < k < M.
- Given / and r, our goal is to find the density of the cell

$$(\cdots ((C_l - C_{l+1}) - C_{l+2}) - \cdots) - C_{r-1} = k * (C_l - (C_{l+1} + \cdots + C_{r-1}))$$

for some integer 0 < k < M, which is equal to the density of

$$C_l - (C_{l+1} + \cdots + C_{r-1})$$

- Note that the density of C(L, A, I) is the same as k * C(L, A, I) for all integer 0 < k < M.
- Given I and r, our goal is to find the density of the cell

$$(\cdots ((C_l - C_{l+1}) - C_{l+2}) - \cdots) - C_{r-1} = k * (C_l - (C_{l+1} + \cdots + C_{r-1}))$$

for some integer 0 < k < M, which is equal to the density of

$$C_l-(C_{l+1}+\cdots+C_{r-1})$$

• The second property ensures that querying in segment tree will find the result of $C_{l+1} + \cdots + C_{r-1}$ times some non-zero constant, and the first property will ensures that subtracting it from C_l will find the desired result times some non-zero constant.

Time Complexity: $N + Q \cdot \log N$ from building and querying the segment tree.

(B) LaLa and Magic Circle (LaLa Version) • First Solved By: –
Problem Description

Given a polygon, find the exact shape and location of the convex polygon obtained by applying flip operations.

• Proving the claims in the statement yields the algorithm to solve this problem.

- Proving the claims in the statement yields the algorithm to solve this problem.
- The final "shape" is fixed since the area always increases and it never changes the multiset of slopes of directed edges.

• Consider the horizontal trapzoidal decomposition of the outer-region of the polygon.

- Consider the horizontal trapzoidal decomposition of the outer-region of the polygon.
- For each finite regions, label it as up or down, depending on the direction you have to go to reach any infinite region.

- Consider the horizontal trapzoidal decomposition of the outer-region of the polygon.
- For each finite regions, label it as up or down, depending on the direction you have to go to reach any infinite region.
- Let U be the sum of the heights of up-regions, and Y be the maximum y-coordinate. Then U + Y is invariant throughout the operations.

- Consider the horizontal trapzoidal decomposition of the outer-region of the polygon.
- For each finite regions, label it as up or down, depending on the direction you have to go to reach any infinite region.
- Let U be the sum of the heights of up-regions, and Y be the maximum y-coordinate. Then U + Y is invariant throughout the operations.
- As U = 0 for the final convex polygon, this sum immediate gives the final maximum y-coordinate.

- Consider the horizontal trapzoidal decomposition of the outer-region of the polygon.
- For each finite regions, label it as up or down, depending on the direction you have to go to reach any infinite region.
- Let U be the sum of the heights of up-regions, and Y be the maximum y-coordinate. Then U + Y is invariant throughout the operations.
- As U = 0 for the final convex polygon, this sum immediate gives the final maximum y-coordinate.
- Repeat the same process with vertical trapzoidal decomposition to compute the maximum x-coordinate.

- Consider the horizontal trapzoidal decomposition of the outer-region of the polygon.
- For each finite regions, label it as up or down, depending on the direction you have to go to reach any infinite region.
- Let U be the sum of the heights of up-regions, and Y be the maximum y-coordinate. Then U + Y is invariant throughout the operations.
- As U = 0 for the final convex polygon, this sum immediate gives the final maximum y-coordinate.
- Repeat the same process with vertical trapzoidal decomposition to compute the maximum x-coordinate.

Reference Paper: Flipturning Polygons

Thanks for participating!