/ | Qingyu | | 5829 |
1 | larryzhong | | 926 |
2 | xiaowuc1 | you're a half a world away, but in my mind I whisper every single word you say | 517 |
3 | MaMengQi | | 459 |
4 | ZhaoZiLong | | 456 |
5 | HuangHanSheng | | 439 |
6 | ZhangYiDe | | 435 |
7 | GuanYunchang | | 432 |
/ | flower | sqytxdy! | 325 |
8 | hydd | Qingyu txdy $\\$ $\text{If my armor breaks, I'll fuse it back together}$ | 312 |
9 | Crysfly | $$f(x)=(\sum_{i=0}^{n-1}\frac{y_i}{(x-q^i)\prod_{j\ne i}(q^i-q^j)})\prod_{i=0}^{n-1}(x-q^i)$$
| 247 |
10 | tricyzhkx | | 228 |
11 | chenshi | | 215 |
12 | zhouhuanyi | | 199 |
13 | Wu_Ren | | 189 |
14 | maspy | | 187 |
15 | repoman | $$\prod_{i=0}^{n-1} (1+q^iz) = \sum_{i=0}^n q^{i(i-1)/2}\binom ni_q z^i$$ | 176 |
16 | He_Ren | | 170 |
16 | qwq | $\displaystyle \sum_{i=1}^n [i,i+1,\cdots, i+k] \pmod{10^9+7}$ | 170 |
18 | alpha1022 | $$\frac{1}{n_1!n_2!}(1-y)^{n_1+n_2+2} \left(\sum_{j\ge 0} y^j(t+j)^{n_1} \right)
\left(\sum_{j\ge 0} y^j((j+1)-t)^{n_2} \right)$$ | 163 |
19 | ckiseki | | 161 |
20 | feecle6418 | gyh ak ioi | 160 |
21 | Lenstar | orz Qingyu | 156 |
21 | Sa3tElSefr | leh | 156 |
23 | Appleblue17 | | 152 |
24 | zhangboju | 短暂登上首页并即将掉下来 | 149 |
25 | eyiigjkn | | 147 |
26 | BeyondHeaven | | 138 |
26 | hutality | $$[x^n](1-x)^{-\frac{1}{2}} \exp\left(\frac{x(1+x)}{2-2x}\right)\frac{\left(\frac{2-x}{2-2x}\right)^k}{k!}\cdot\,_0 F _1 \left(;k+1;x\left(\frac{2-x}{2-2x}\right)^2\right)$$ | 138 |
28 | lmeowdn | | 137 |
29 | LH | $$|X/G| = \frac{1}{|G|}\sum_{g \in G}|X^g|$$ | 135 |
29 | Minneapolis | 卷王别卷了 | 135 |
31 | YaoBIG | | 131 |
32 | zombie462 | <b>123</b> | 124 |
33 | Sorting | | 123 |
34 | not_so_organic | 今晚九点,QYC 唱歌。 | 121 |
35 | JohnAlfnov | Qingyu Kedavra ! | 119 |
36 | whatever | | 116 |
37 | std | 大家好,我是来自彭博社的埃斯提迪 | 115 |
38 | sdoi | $$P_{a_i}(x) = [t^{a_i}]\frac{1}{1-xF(t)}$$ | 111 |
39 | zhoukangyang | | 110 |
40 | DianasDog | 关注嘉然,顿顿解馋 | 109 |
41 | AFewSuns | $\displaystyle\sum_{n \geq 0}{(x+y)^n\frac{u^n}{n!}}=\sum_{k \geq 0}\frac{x}{x-kz}(x-kz)^k\frac{u^k}{k!}\sum_{l \geq 0}\frac{(y+kz)^l}{l!}u^l$ | 108 |
42 | hos_lyric | 兔 | 105 |
/ | Qiuly | 理论上状态数应该是 $2^{552}$,但搜一搜发现只有 $1834$ 。 | 104 |
43 | xiaoyaowudi | | 103 |
44 | propensity | The binary Gray code is fun,
For in it strange things can be done.
Fifteen, as you know,
Is one, oh, oh, oh,
And ten is one, one, one and one | 101 |
45 | ybw051114 | | 100 |
46 | LoverInTime | 089年的树剖 | 99 |
47 | myee | 与其诺诺以顺,不若谔谔以昌 | 98 |
47 | smax | | 98 |
47 | wlxhkk | | 98 |
50 | perspective | | 97 |
51 | Baltinic | $$\rho \left ( \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = - \nabla p + \nabla \cdot \mathbf{T} + \mathbf{f}$$ | 92 |
51 | DaBenZhongXiaSongKuaiDi | | 92 |
53 | George_Plover | | 91 |
53 | sinbad | | 91 |
55 | huredomirikayatuda | | 90 |
56 | testusera | | 88 |
57 | little_sun | | 86 |
58 | yangjiuzhi | @_silhouette_ | 84 |
59 | Beevo | | 83 |
60 | abdelrahman001 | | 82 |
61 | 15867449938 | $$Z_G(t_1,t_2,\ldots,t_n) = \frac{1}{|G|}\sum_{g \in G} t_1^{c_1(g)} t_2^{c_2(g)} \cdots t_n^{c_n(g)}$$ | 81 |
61 | 99pts_WA | | 81 |
63 | 123456 | 俺宣布俺是正宗滴【123456】 | 79 |
64 | Chenguanlin | 陈冠霖培训班现在开课,报名请私聊陈冠霖。 | 76 |
64 | _silhouette_ | | 76 |
66 | fzj2007 | | 75 |
66 | Macesuted | | 75 |
68 | PetroTarnavskyi | | 72 |
68 | xiaojifang | 大家好我是小机房,又名更衣室。 | 72 |
70 | Froggygua | 周转没有丁丁。 | 71 |
70 | hydd_lenstar_team | | 71 |
72 | winmain | | 70 |
73 | triplem5ds | | 69 |
74 | sagittarius_fjz | 魔法少女小熊 | 68 |
75 | Mr_Eight | 今晚九点,whq唱歌,不见不散。 | 67 |
76 | goodman | | 66 |
77 | KING_UT | | 65 |
77 | pretentious | $$\det(AB) = \sum_{S\in\tbinom{[n]}m} \det(A_{[m],S})\det(B_{S,[m]})$$ | 65 |
79 | neko_nyaa | | 63 |
79 | SuffixTree | | 63 |
81 | Arraiter | | 62 |
81 | CharlieVinnie | You fly away so proudly, away from my summer. Slient words of praying, all these years repeating | 62 |
81 | littlesummer | | 62 |
81 | MIT01 | | 62 |
81 | znstz | | 62 |
86 | flywatre | | 61 |
86 | skittles1412 | | 61 |
86 | taniya | $$\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{\frac{k(3k-1)}{2}}=\sum_{k=0}^\infty(-1)^kx^{\frac{k(3k\pm 1)}{2}}$$ | 61 |
89 | 00 | $$
e^x = \sum_{n=0} \frac{x^n}{n!}
$$ | 60 |
89 | qinjianbin | | 60 |
91 | 275307894a | | 59 |
91 | Iris | ? | 59 |
91 | QAQQWQ | | 59 |
94 | Zuqa | | 57 |
95 | JackF | ______是不是贺子 | 56 |
95 | magicduck | | 56 |
95 | yh | | 56 |