QOJ.ac

QOJ

#UsernameMottoAuthored Problems
1clrs9782
2quailty75
3TsReaper69
4bulijiojiodibuliduo55
5ftiasch46
6zimpha42
7Elegia$\mathbf{PER} \in \mathbf{DTIME}_{\mathsf{RAM}}[2^{n - \Omega(\sqrt n)}]$37
7Qingyu一如此刻,十指紧握37
9tangjz36
10AHdoc30
11Itst29
12Suika_predator27
13Heltion21
13pb020721
15jiry_220
16chenjb19
17Kubic17
18Roundgod14
19rddccd13
20subconscious12
21SGColinyixionggao.com10
21skip2004骄傲的活下去10
21xtqqwq10
24LCD9
24xyz26069
26sserxhs8
27feecle6418gyh ak ioi7
27flower7
27skyline7
27xiaolilsq7
31djq_cpp6
31gyh206
31nike0good6
34Alex_Wei5
34jiangly5
34Joyemang5
34Kevin5307$$ \frac{1}{1-x}\sum_{k=1}^\infty\frac{x^k}{1-\frac{x-x^{k+1}}{1-x}} $$5
34lwn_165
34oipotato5
34Sulfox5
41csy2005$1>0$4
41FSYo4
41hezlik马老师什么时候找 npy4
41Lynkcat4
41nzhtl14774
41uyom4
41Yakumo_Ran4
48He_Ren3
48ix353
48p_b_p_b3
48qazswedx3
48zx20033
535ab2
53dailongao2
53ducati2
53houzhiyuan2
53JohnVictor362
53LeafSeek沉谜底于心 笃信这缕光会为我指引2
53MonkeyKing2
53myee与其诺诺以顺,不若谔谔以昌2
53nealchen2
53wasa8552
53Wu_Ren2
6410circle1
64127$$\int_{i(M)}\mathrm{d} \omega =\int_{\partial M}\omega$$1
641kri1
64alpha1022$$\frac{1}{n_1!n_2!}(1-y)^{n_1+n_2+2} \left(\sum_{j\ge 0} y^j(t+j)^{n_1} \right) \left(\sum_{j\ge 0} y^j((j+1)-t)^{n_2} \right)$$1
64chenxia251
64Chinese_zjc_1
64command_block1
64Crysfly我还能为你驻足到何时1
64djwj2331
64dottle1
64dXqwqI can see the Light on you, You can see the Right on me1
64Evier1
64fizzydavid1
64fjzzq20021
64fstqwq1
64hanyuwei明日はきっと 明日はきっと 仆が世界の中心なので1
64hehezhou1
64isaunoya1
64KHIN1
64lanos2121
64liuzhangfeiabc1
64LuoTianYi困惑地 拘束着 如城市池中之鱼1
64peehs_moorhsum1
64Qiulyfendou1
64superguymj1
64tzc_wk1
64xcyle1
64xiaoziyao1
64yaoxi_std1
64yzc20051
64zhoukangyang1
64znstz1
96_0
96__0
96___0
96_____0
96_______0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11