Source: Library Checker
There are $N$ segments $y = a_i x + b_i$ (where $x \in [l_i, r_i)$). Process $Q$ queries.
0 $l$ $r$ $a$ $b$
: Add a segment $y = ax + b$ (where $x \in [l, r)$)1 $p$
: Find the minimal $y$ at $x = p$. If such $y$ doesn't exist, outputNO
.
Constraints
- $1 \leq N, Q \leq 200\,000$
- $-10^9 \leq l_i \lt r_i \leq 10^9$
- $|a_i|, |p| \leq 10^9$
- $|b_i| \leq 10^{18}$
Input
$N$ $Q$ $l_0$ $r_0$ $a_0$ $b_0$ $l_1$ $r_1$ $a_1$ $b_1$ : $l_{N-1}$ $r_{N-1}$ $a_{N-1}$ $b_{N-1}$ $\textrm{Query}_0$ $\textrm{Query}_1$ : $\textrm{Query}_{Q - 1}$
Examples
Input 1
2 8
-3 3 -1 -1
0 7 0 1
1 -1
1 -2
1 0
1 2
0 -4 2 0 -10
1 -2
1 0
1 2
Output 1
0
1
-1
-3
-10
-10
-3
Input 2
1 2
-10 0 0 0
1 0
1 -1
Output 2
NO
0