QOJ.ac

QOJ

#用户名格言通过数
/Qingyu5901
1larryzhong943
2xiaowuc1you're a half a world away, but in my mind I whisper every single word you say519
3MaMengQi465
4ZhaoZiLong464
5HuangHanSheng443
6ZhangYiDe442
7GuanYunchang438
8flowerqingyu txdy!335
9hyddQingyu txdy $\\$ $\text{If my armor breaks, I'll fuse it back together}$312
10Crysfly$$f(x)=(\sum_{i=0}^{n-1}\frac{y_i}{(x-q^i)\prod_{j\ne i}(q^i-q^j)})\prod_{i=0}^{n-1}(x-q^i)$$ 257
11tricyzhkx230
12chenshi216
13zhouhuanyi199
14maspy193
15Wu_Ren189
16He_Ren184
17repoman$$\prod_{i=0}^{n-1} (1+q^iz) = \sum_{i=0}^n q^{i(i-1)/2}\binom ni_q z^i$$176
18qwq$\displaystyle \sum_{i=1}^n [i,i+1,\cdots, i+k] \pmod{10^9+7}$170
19alpha1022$$\frac{1}{n_1!n_2!}(1-y)^{n_1+n_2+2} \left(\sum_{j\ge 0} y^j(t+j)^{n_1} \right) \left(\sum_{j\ge 0} y^j((j+1)-t)^{n_2} \right)$$163
20ckiseki161
21feecle6418gyh ak ioi160
22Lenstarorz Qingyu156
22Sa3tElSefrleh156
24Appleblue17152
25eyiigjkn151
26zhangboju短暂登上首页并即将掉下来149
27lmeowdn147
28std大家好,我是来自彭博社的埃斯提迪143
29BeyondHeaven138
29hutality$$[x^n](1-x)^{-\frac{1}{2}} \exp\left(\frac{x(1+x)}{2-2x}\right)\frac{\left(\frac{2-x}{2-2x}\right)^k}{k!}\cdot\,_0 F _1 \left(;k+1;x\left(\frac{2-x}{2-2x}\right)^2\right)$$138
31LH$$|X/G| = \frac{1}{|G|}\sum_{g \in G}|X^g|$$135
31Minneapolis卷王别卷了135
33YaoBIG131
34Sorting127
35zombie462<b>123</b>124
36hos_lyric122
37not_so_organic今晚九点,QYC 唱歌。121
38JohnAlfnovQingyu Kedavra ! 119
/Qiuly失望,难过,愤怒。太伤心了!118
39whatever116
40zhoukangyang115
41AFewSuns$\displaystyle\sum_{n \geq 0}{(x+y)^n\frac{u^n}{n!}}=\sum_{k \geq 0}\frac{x}{x-kz}(x-kz)^k\frac{u^k}{k!}\sum_{l \geq 0}\frac{(y+kz)^l}{l!}u^l$113
42sdoi$$P_{a_i}(x) = [t^{a_i}]\frac{1}{1-xF(t)}$$111
43DianasDog关注嘉然,顿顿解馋109
44xiaoyaowudi106
45wlxhkk104
46propensityThe binary Gray code is fun, For in it strange things can be done. Fifteen, as you know, Is one, oh, oh, oh, And ten is one, one, one and one101
47LoverInTime089年的树剖100
47ybw051114100
49myee与其诺诺以顺,不若谔谔以昌99
50smax98
51perspective97
52Baltinic$$\rho \left ( \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = - \nabla p + \nabla \cdot \mathbf{T} + \mathbf{f}$$92
52DaBenZhongXiaSongKuaiDi92
54George_Plover91
54sinbad91
56huredomirikayatuda90
57testusera88
5899pts_WA87
59little_sun86
60yangjiuzhi@_silhouette_84
61Beevo83
61PetroTarnavskyi83
63abdelrahman00182
6415867449938$$Z_G(t_1,t_2,\ldots,t_n) = \frac{1}{|G|}\sum_{g \in G} t_1^{c_1(g)} t_2^{c_2(g)} \cdots t_n^{c_n(g)}$$81
65123456俺宣布俺是正宗滴【123456】79
66Chenguanlin陈冠霖培训班现在开课,报名请私聊陈冠霖。76
66_silhouette_76
68fzj200775
68Macesuted75
70xiaojifang大家好我是小机房,又名更衣室。72
71Froggygua周转没有丁丁。71
71hydd_lenstar_team71
73winmain70
74triplem5ds69
75sagittarius_fjz魔法少女小熊68
76goodman67
76Mr_Eight今晚九点,whq唱歌,不见不散。67
76znstz67
79KING_UT65
79pretentious$$\det(AB) = \sum_{S\in\tbinom{[n]}m} \det(A_{[m],S})\det(B_{S,[m]})$$65
81CharlieVinnieYou fly away so proudly, away from my summer. Slient words of praying, all these years repeating64
82neko_nyaa63
82SuffixTree63
84Arraiter62
84littlesummer62
84MIT0162
8700$$ e^x = \sum_{n=0} \frac{x^n}{n!} $$61
87275307894a61
87flywatre61
87skittles141261
87taniya$$\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{\frac{k(3k-1)}{2}}=\sum_{k=0}^\infty(-1)^kx^{\frac{k(3k\pm 1)}{2}}$$61
92qinjianbin60
93Iris?59
93QAQQWQ59
95magicduck57
95yyyyxh57
95Zuqa57
98JackF______是不是贺子56
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11