QOJ.ac

QOJ

#UsernameMottoSolved
/Qingyu5885
1larryzhong931
2xiaowuc1you're a half a world away, but in my mind I whisper every single word you say519
3MaMengQi462
4ZhaoZiLong459
5HuangHanSheng442
6ZhangYiDe440
7GuanYunchang437
/flowerqingyu txdy!334
8hyddQingyu txdy $\\$ $\text{If my armor breaks, I'll fuse it back together}$312
9Crysfly$$f(x)=(\sum_{i=0}^{n-1}\frac{y_i}{(x-q^i)\prod_{j\ne i}(q^i-q^j)})\prod_{i=0}^{n-1}(x-q^i)$$ 254
10tricyzhkx230
11chenshi216
12zhouhuanyi199
13maspy193
14Wu_Ren189
15He_Ren183
16repoman$$\prod_{i=0}^{n-1} (1+q^iz) = \sum_{i=0}^n q^{i(i-1)/2}\binom ni_q z^i$$176
17qwq$\displaystyle \sum_{i=1}^n [i,i+1,\cdots, i+k] \pmod{10^9+7}$170
18alpha1022$$\frac{1}{n_1!n_2!}(1-y)^{n_1+n_2+2} \left(\sum_{j\ge 0} y^j(t+j)^{n_1} \right) \left(\sum_{j\ge 0} y^j((j+1)-t)^{n_2} \right)$$163
19ckiseki161
20feecle6418gyh ak ioi160
21Lenstarorz Qingyu156
21Sa3tElSefrleh156
23Appleblue17152
24eyiigjkn151
25zhangboju短暂登上首页并即将掉下来149
26lmeowdn147
27BeyondHeaven138
27hutality$$[x^n](1-x)^{-\frac{1}{2}} \exp\left(\frac{x(1+x)}{2-2x}\right)\frac{\left(\frac{2-x}{2-2x}\right)^k}{k!}\cdot\,_0 F _1 \left(;k+1;x\left(\frac{2-x}{2-2x}\right)^2\right)$$138
29LH$$|X/G| = \frac{1}{|G|}\sum_{g \in G}|X^g|$$135
29Minneapolis卷王别卷了135
31std大家好,我是来自彭博社的埃斯提迪133
32YaoBIG131
33zombie462<b>123</b>124
34Sorting123
35not_so_organic今晚九点,QYC 唱歌。121
36JohnAlfnovQingyu Kedavra ! 119
/Qiuly失望,难过,愤怒。太伤心了!118
37whatever116
38hos_lyric114
38zhoukangyang114
40sdoi$$P_{a_i}(x) = [t^{a_i}]\frac{1}{1-xF(t)}$$111
41AFewSuns$\displaystyle\sum_{n \geq 0}{(x+y)^n\frac{u^n}{n!}}=\sum_{k \geq 0}\frac{x}{x-kz}(x-kz)^k\frac{u^k}{k!}\sum_{l \geq 0}\frac{(y+kz)^l}{l!}u^l$110
42DianasDog关注嘉然,顿顿解馋109
43xiaoyaowudi106
44propensityThe binary Gray code is fun, For in it strange things can be done. Fifteen, as you know, Is one, oh, oh, oh, And ten is one, one, one and one101
44wlxhkk101
46LoverInTime089年的树剖100
46ybw051114100
48myee与其诺诺以顺,不若谔谔以昌99
49smax98
50perspective97
51Baltinic$$\rho \left ( \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = - \nabla p + \nabla \cdot \mathbf{T} + \mathbf{f}$$92
51DaBenZhongXiaSongKuaiDi92
53George_Plover91
53sinbad91
55huredomirikayatuda90
56testusera88
57little_sun86
5899pts_WA85
59yangjiuzhi@_silhouette_84
60Beevo83
61abdelrahman00182
6215867449938$$Z_G(t_1,t_2,\ldots,t_n) = \frac{1}{|G|}\sum_{g \in G} t_1^{c_1(g)} t_2^{c_2(g)} \cdots t_n^{c_n(g)}$$81
63123456俺宣布俺是正宗滴【123456】79
64Chenguanlin陈冠霖培训班现在开课,报名请私聊陈冠霖。76
64_silhouette_76
66fzj200775
66Macesuted75
68PetroTarnavskyi72
68xiaojifang大家好我是小机房,又名更衣室。72
70Froggygua周转没有丁丁。71
70hydd_lenstar_team71
72winmain70
73triplem5ds69
74sagittarius_fjz魔法少女小熊68
75Mr_Eight今晚九点,whq唱歌,不见不散。67
75znstz67
77goodman66
78KING_UT65
78pretentious$$\det(AB) = \sum_{S\in\tbinom{[n]}m} \det(A_{[m],S})\det(B_{S,[m]})$$65
80CharlieVinnieYou fly away so proudly, away from my summer. Slient words of praying, all these years repeating63
80neko_nyaa63
80SuffixTree63
83Arraiter62
83littlesummer62
83MIT0162
8600$$ e^x = \sum_{n=0} \frac{x^n}{n!} $$61
86275307894a61
86flywatre61
86skittles141261
86taniya$$\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{\frac{k(3k-1)}{2}}=\sum_{k=0}^\infty(-1)^kx^{\frac{k(3k\pm 1)}{2}}$$61
91qinjianbin60
92Iris?59
92QAQQWQ59
94magicduck57
94Zuqa57
96JackF______是不是贺子56
96yh56
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11