QOJ.ac

QOJ

#UsernameMottoSolved
1hos_lyric$$\left[\frac{x^n}{n!} q^{K-1}\right] \frac{(\mathrm{e}^{rx} - 1) (q + r + \mathrm{e}^{rx} + q \mathrm{e}^{rx} - r \mathrm{e}^{rx} + 1)}{(q + 1) (r - \mathrm{e}^{2rx} + r \mathrm{e}^{2rx} + 1)}$$1071
2larryzhong983
3ucup-team1005大家好,我是 C++ 高手,今天来点大家想看的东西。$$ \begin{aligned} &\texttt{sort(Ring.begin(), Ring.end());} \\ &\texttt{sort(Chain.begin(), Chain.begin(), [](int x, int y) \{return x > y;\});} \end{aligned}$$721
4PetroTarnavskyiWhy haven't you registered at https://algotester.com/en yet? 🤨667
5zhouhuanyi616
6ckiseki卷不动了609
7Crysfly加训602
8ucup-team2335562
9PhantomThreshold548
10xiaowuc1you're a half a world away, but in my mind I whisper every single word you say532
11dXqwqTo the cosmic523
12lmq26052003509
13grass8cow490
14SolitaryDream462
15ucup-team1209我不是可爱小青鱼442
16ucup-team087425
17ucup-team004420
18ucup-team1198416
19LoverInTime089年的树剖401
20ucup-team2880396
21flower378
22maspyUniversal Cup Upsol部366
23qiuzx358
24ucup-team1878354
25275307894a344
26MoRanSky无论过去 不问将来333
27Kevin5307$$ \frac{1}{1-x}\sum_{k=1}^\infty\frac{x^k}{1-\frac{x-x^{k+1}}{1-x}} $$324
28hyforces永远不够316
29hyddQingyu txdy $\\$ If my armor breaks, I'll fuse it back together310
29waifuSenpai310
31lmeowdn303
32ucup-team191302
33ucup-team987301
34ucup-team864300
35Lynkcat298
36Sortingㅗ오ㅗ 293
37ucup-team052292
38alpha1022$$\frac{1}{n_1!n_2!}(1-y)^{n_1+n_2+2} \left(\sum_{j\ge 0} y^j(t+j)^{n_1} \right) \left(\sum_{j\ge 0} y^j((j+1)-t)^{n_2} \right)$$286
39ucup-team159280
39ucup-team266280
41znstz276
42ucup-team133270
43james1BadCreeper他明白 他明白 我给不起269
44ucup-team1004方队akioi268
45AFewSuns$\displaystyle\sum_{n \geq 0}{(x+y)^n\frac{u^n}{n!}}=\sum_{k \geq 0}\frac{x}{x-kz}(x-kz)^k\frac{u^k}{k!}\sum_{l \geq 0}\frac{(y+kz)^l}{l!}u^l$266
45ezteam1266
47bachbeo2007265
48ucup-team1134264
49ucup-team1447没队要263
50ucup-team253258
51zhaohaikun250
52tricyzhkx249
53ucup-team130246
54ucup-team138241
54ucup-team267哈姆。241
56iee239
57sdoi$$P_{a_i}(x) = [t^{a_i}]\frac{1}{1-xF(t)}$$237
57ucup-team025237
59He_Ren236
59ucup-team134236
61KKT89233
61ucup-team112233
63ucup-team122229
64ucup-team180226
658BQube222
65ucup-team216222
67chenshi218
68karuna215
68repoman$$\prod_{i=0}^{n-1} (1+q^iz) = \sum_{i=0}^n q^{i(i-1)/2}\binom ni_q z^i$$215
68ushg8877215
71ucup-team1293213
72ucup-team228212
72zhoukangyang212
74ucup-team870210
75ucup-team3215204
76new_dawn_2203
77ucup-team123202
77ucup-team244202
79kevinyang201
80qwq$\displaystyle \sum_{i=1}^n [i,i+1,\cdots, i+k] \pmod{10^9+7}$199
80ship2077199
80ucup-team1126199
83ucup-team029197
84do_while_true196
84ucup-team1191196
86Wu_Ren194
87ucup-team311191
88_map_map<problem_statement,vector<pair<oj,problem_id>>>190
89ucup-team026188
89ucup-team1055188
91JohnAlfnovQingyu Kedavra ! 185
91ucup-team045185
93DitaMirika184
93myee与其诺诺以顺,不若谔谔以昌184
95chenxinyang2006179
96bulijiojiodibuliduo178
96monstersqwq178
98feecle6418gyh ak ioi177
98ucup-team1123177
100mendicillin2171
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11