/ | Qingyu | ღ花花ღ | 5520 |
1 | larryzhong | | 816 |
2 | xiaowuc1 | you're a half a world away, but in my mind I whisper every single word you say | 517 |
3 | ZhaoZiLong | | 403 |
4 | MaMengQi | | 391 |
5 | HuangHanSheng | | 383 |
6 | ZhangYiDe | | 381 |
7 | GuanYunchang | | 378 |
8 | hydd | Qingyu txdy $\\$ $\text{If my armor breaks, I’ll fuse it back together}$ | 312 |
/ | flower | sqytxdy! | 262 |
9 | Wu_Ren | | 188 |
10 | Crysfly | $$f(x)=(\sum_{i=0}^{n-1}\frac{y_i}{(x-q^i)\prod_{j\ne i}(q^i-q^j)})\prod_{i=0}^{n-1}(x-q^i)$$
| 182 |
11 | repoman | $$\prod_{i=0}^{n-1} (1+q^iz) = \sum_{i=0}^n q^{i(i-1)/2}\binom ni_q z^i$$ | 176 |
12 | alpha1022 | $$\frac{1}{n_1!n_2!}(1-y)^{n_1+n_2+2} \left(\sum_{j\ge 0} y^j(t+j)^{n_1} \right)
\left(\sum_{j\ge 0} y^j((j+1)-t)^{n_2} \right)$$ | 161 |
13 | feecle6418 | gyh ak ioi | 159 |
14 | qwq | $\displaystyle \sum_{i=1}^n [i,i+1,\cdots, i+k] \pmod{10^9+7}$ | 158 |
15 | Lenstar | orz Qingyu | 156 |
16 | zhouhuanyi | | 153 |
17 | tricyzhkx | | 149 |
18 | He_Ren | | 148 |
19 | Sa3tElSefr | | 146 |
20 | hutality | $$[x^n](1-x)^{-\frac{1}{2}} \exp\left(\frac{x(1+x)}{2-2x}\right)\frac{\left(\frac{2-x}{2-2x}\right)^k}{k!}\cdot\,_0 F _1 \left(;k+1;x\left(\frac{2-x}{2-2x}\right)^2\right)$$ | 138 |