QOJ.ac

QOJ

Announces
QOJ 常见问题(Q&A) by Qingyu 2023-03-23 22:14:28
QOJ 更新日志(2023 Apr) by Qingyu 2023-01-06 20:27:29
 
 
 
 
 
toutes les annonces……

Top solved

#Nom d'utilisateurMottoRésolu
/Qingyu5885
1larryzhong931
2xiaowuc1you're a half a world away, but in my mind I whisper every single word you say519
3MaMengQi462
4ZhaoZiLong459
5HuangHanSheng442
6ZhangYiDe440
7GuanYunchang437
/flowerqingyu txdy!334
8hyddQingyu txdy $\\$ $\text{If my armor breaks, I'll fuse it back together}$312
9Crysfly$$f(x)=(\sum_{i=0}^{n-1}\frac{y_i}{(x-q^i)\prod_{j\ne i}(q^i-q^j)})\prod_{i=0}^{n-1}(x-q^i)$$ 254
10tricyzhkx230
11chenshi216
12zhouhuanyi199
13maspy193
14Wu_Ren189
15He_Ren183
16repoman$$\prod_{i=0}^{n-1} (1+q^iz) = \sum_{i=0}^n q^{i(i-1)/2}\binom ni_q z^i$$176
17qwq$\displaystyle \sum_{i=1}^n [i,i+1,\cdots, i+k] \pmod{10^9+7}$170
18alpha1022$$\frac{1}{n_1!n_2!}(1-y)^{n_1+n_2+2} \left(\sum_{j\ge 0} y^j(t+j)^{n_1} \right) \left(\sum_{j\ge 0} y^j((j+1)-t)^{n_2} \right)$$163
19ckiseki161
20feecle6418gyh ak ioi160